Show simple item record

Oxidative stress‐induced dysregulation of excitation–contraction coupling contributes to muscle weakness

dc.contributor.authorQaisar, Rizwan
dc.contributor.authorBhaskaran, Shylesh
dc.contributor.authorPremkumar, Pavithra
dc.contributor.authorRanjit, Rojina
dc.contributor.authorNatarajan, Kavithalakshmi Satara
dc.contributor.authorAhn, Bumsoo
dc.contributor.authorRiddle, Kaitlyn
dc.contributor.authorClaflin, Dennis R.
dc.contributor.authorRichardson, Arlan
dc.contributor.authorBrooks, Susan V.
dc.contributor.authorVan Remmen, Holly
dc.date.accessioned2018-11-20T15:31:51Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationQaisar, Rizwan; Bhaskaran, Shylesh; Premkumar, Pavithra; Ranjit, Rojina; Natarajan, Kavithalakshmi Satara; Ahn, Bumsoo; Riddle, Kaitlyn; Claflin, Dennis R.; Richardson, Arlan; Brooks, Susan V.; Van Remmen, Holly (2018). "Oxidative stress‐induced dysregulation of excitation–contraction coupling contributes to muscle weakness." Journal of Cachexia, Sarcopenia and Muscle 9(5): 1003-1017.
dc.identifier.issn2190-5991
dc.identifier.issn2190-6009
dc.identifier.urihttps://hdl.handle.net/2027.42/146296
dc.description.abstractBackgroundWe have previously shown that the deletion of the superoxide scavenger, CuZn superoxide dismutase, in mice (Sod1−/− mice) results in increased oxidative stress and an accelerated loss of skeletal muscle mass and force that mirror the changes seen in old control mice. The goal of this study is to define the effect of oxidative stress and ageing on muscle weakness and the Excitation Contraction (EC) coupling machinery in age‐matched adult (8–10 months) wild‐type (WT) and Sod1−/− mice in comparison with old (25–28 months) WT mice.MethodsIn vitro contractile assays were used to measure muscle contractile parameters. The activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump was measured using an NADH‐linked enzyme assay. Immunoblotting and immunofluorescence techniques were used to measure protein expression, and real‐time reverse transcription PCR was used to measure gene expression.ResultsThe specific force generated by the extensor digitorum longus muscle was reduced in the Sod1−/− and old WT mice compared with young WT mice along with significant prolongation of time to peak force, increased half relaxation time, and disruption of intracellular calcium handling. The maximal activity of the SERCA calcium uptake pump was significantly reduced in gastrocnemius muscle from both old WT (≈14%) and adult Sod1−/− (≈33%) mice compared with young WT mice along with increased expression of sarcolipin, a known inhibitor of SERCA activity. Protein levels of the voltage sensor and calcium uptake channel proteins dihydropyridine receptor α1 and SERCA2 were significantly elevated (≈45% and ≈57%, respectively), while the ratio of calstabin, a channel stabilizing protein, to ryanodine receptor was significantly reduced (≈21%) in Sod1−/− mice compared with young WT mice. The changes in calcium handling were accompanied by substantially elevated levels of global protein carbonylation and lipid peroxidation.ConclusionsOur data suggest that the muscle weakness in Sod1−/− and old WT mice is in part driven by reactive oxygen species‐mediated EC uncoupling and supports a role for reduced SERCA pump activity in compromised muscle function. The novel quantitative mechanistic data provided here can lead to potential therapeutic interventions of SERCA dysfunction for sarcopenia and muscle diseases.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSarcopenia
dc.subject.otherExcitation contraction coupling
dc.subject.otherSERCA pump
dc.subject.otherSarcolipin
dc.subject.otherSod1
dc.subject.otherSkeletal muscle
dc.titleOxidative stress‐induced dysregulation of excitation–contraction coupling contributes to muscle weakness
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146296/1/jcsm12339.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146296/2/jcsm12339_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146296/3/jcsm12339-sup-0001-Supplementary_Material.pdf
dc.identifier.doi10.1002/jcsm.12339
dc.identifier.sourceJournal of Cachexia, Sarcopenia and Muscle
dc.identifier.citedreferencevan der Poel C, Edwards JN, Macdonald WA, Stephenson DG. Effect of temperature‐induced reactive oxygen species production on excitation‐contraction coupling in mammalian skeletal muscle. Clin Exp Pharmacol Physiol 2008; 35: 1482 – 1487.
dc.identifier.citedreferenceJang YC, Liu Y, Hayworth CR, Bhattacharya A, Lustgarten MS, Muller FL, Chaudhuri A, Qi W, Li Y, Huang JY, Verdin E, Richardson A, Van Remmen H. Dietary restriction attenuates age‐associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell 2012; 11: 770 – 782.
dc.identifier.citedreferenceViner RI, Ferrington DA, Aced GI, Miller‐Schlyer M, Bigelow DJ, Schöneich C. In vivo aging of rat skeletal muscle sarcoplasmic reticulum Ca‐ATPase. Chemical analysis and quantitative simulation by exposure to low levels of peroxyl radicals. Biochim Biophys Acta 1997; 1329: 321 – 335.
dc.identifier.citedreferenceGreen HJ, Burnett M, Duhamel TA, D’Arsigny C, O’Donnell DE, Webb KA, Ouyang J. Abnormal sarcoplasmic reticulum Ca2+‐sequestering properties in skeletal muscle in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2008; 295: C350 – C357.
dc.identifier.citedreferenceEspinoza‐Fonseca LM, Autry JM, Thomas DD. Sarcolipin and phospholamban inhibit the calcium pump by populating a similar metal ion‐free intermediate state. Biochem Biophys Res Commun 2015; 463: 37 – 41.
dc.identifier.citedreferenceTupling AR, Asahi M, MacLennan DH. Sarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile function. J Biol Chem 2002; 277: 44740 – 44746.
dc.identifier.citedreferenceBellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, LaCampagne A, Marks AR. Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 2008; 105: 2198 – 2202.
dc.identifier.citedreferenceThompson LV, Durand D, Fugere NA, Ferrington DA. Myosin and actin expression and oxidation in aging muscle. J Appl Physiol (1985) 2006; 101: 1581 – 1587.
dc.identifier.citedreferenceSmith IJ, Lecker SH, Hasselgren PO. Calpain activity and muscle wasting in sepsis. Am J Physiol Endocrinol Metab 2008; 295: E762 – E771.
dc.identifier.citedreferenceChilders MK, Bogan JR, Bogan DJ, Greiner H, Holder M, Grange RW, Kornegay JN. Chronic administration of a leupeptin‐derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of duchenne muscular dystrophy. Front Pharmacol 2011; 2: 89.
dc.identifier.citedreferenceJang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H, Salmon AB, Brooks SV, Larkin L, Hayworth CR, Richardson A, Van Remmen H. Increased superoxide in vivo accelerates age‐associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 2010; 24: 1376 – 1390.
dc.identifier.citedreferenceBaylor SM, Hollingworth S. Simulation of Ca2+ movements within the sarcomere of fast‐twitch mouse fibers stimulated by action potentials. J Gen Physiol 2007; 130: 283 – 302.
dc.identifier.citedreferenceHou TT, Johnson JD, Rall JA. Role of parvalbumin in relaxation of frog skeletal muscle. Adv Exp Med Biol 1993; 332: 141 – 151, discussion 151‐3.
dc.identifier.citedreferenceHollingworth S, Zeiger U, Baylor SM. Comparison of the myoplasmic calcium transient elicited by an action potential in intact fibres of mdx and normal mice. J Physiol 2008; 586: 5063 – 5075.
dc.identifier.citedreferenceThomas MM, Vigna C, Betik AC, Tupling AR, Hepple RT. Initiating treadmill training in late middle age offers modest adaptations in Ca2+ handling but enhances oxidative damage in senescent rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 298: R1269 – R1278.
dc.identifier.citedreferenceRuss DW, Grandy JS, Toma K, Ward CW. Ageing, but not yet senescent, rats exhibit reduced muscle quality and sarcoplasmic reticulum function. Acta Physiol (Oxf) 2011; 201: 391 – 403.
dc.identifier.citedreferenceFerrington DA, Krainev AG, Bigelow DJ. Altered turnover of calcium regulatory proteins of the sarcoplasmic reticulum in aged skeletal muscle. J Biol Chem 1998; 273: 5885 – 5891.
dc.identifier.citedreferenceSun J, Xu L, Eu JP, Stamler JS, Meissner G. Classes of thiols that influence the activity of the skeletal muscle calcium release channel. J Biol Chem 2001; 276: 15625 – 15630.
dc.identifier.citedreferenceWard CW, Reiken S, Marks AR, Marty I, Vassort G, Lacampagne A. Defects in ryanodine receptor calcium release in skeletal muscle from post‐myocardial infarct rats. FASEB J 2003; 17: 1517 – 1519.
dc.identifier.citedreferencePayne AM, Delbono O. Neurogenesis of excitation‐contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev 2004; 32: 36 – 40.
dc.identifier.citedreferenceSchertzer JD, Plant DR, Ryall JG, Beitzel F, Stupka N, Lynch GS. Beta2‐agonist administration increases sarcoplasmic reticulum Ca2+‐ATPase activity in aged rat skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288: E526 – E533.
dc.identifier.citedreferenceArgiles JM, Fontes‐Oliveira CC, Toledo M, López‐Soriano FJ, Busquets S. Cachexia: a problem of energetic inefficiency. J Cachexia Sarcopenia Muscle 2014; 5: 279 – 286.
dc.identifier.citedreferenceCalvo AC, Manzano R, Atencia‐Cibreiro G, Oliván S, Muñoz MJ, Zaragoza P, Cordero‐Vázquez P, Esteban‐Pérez J, García‐Redondo A, Osta R. Genetic biomarkers for ALS disease in transgenic SOD1 (G93A) mice. PLoS One 2012; 7: e32632.
dc.identifier.citedreferenceLiu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, Bassel‐Duby R, Olson EN. Mice lacking microRNA 133a develop dynamin 2‐dependent centronuclear myopathy. J Clin Invest 2011; 121: 3258 – 3268.
dc.identifier.citedreferenceSchneider JS, Shanmugam M, Gonzalez JP, Lopez H, Gordan R, Fraidenraich D, Babu GJ. Increased sarcolipin expression and decreased sarco (endo) plasmic reticulum Ca2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy. J Muscle Res Cell Motil 2013; 34: 349 – 356.
dc.identifier.citedreferenceD’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 2003; 552: 499 – 511.
dc.identifier.citedreferenceHaycock JW, Mac Neil S, Mantle D. Differential protein oxidation in Duchenne and Becker muscular dystrophy. Neuroreport 1998; 9: 2201 – 2207.
dc.identifier.citedreferenceOchala J, Gustafson AM, Diez ML, Renaud G, Li M, Aare S, Qaisar R, Banduseela VC, Hedström Y, Tang X, Dworkin B, Ford GC, Nair KS, Perera S, Gautel M, Larsson L. Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. J Physiol 2011; 589: 2007 – 2026.
dc.identifier.citedreferenceZhu X, van Hees HWH, Heunks L, Wang F, Shao L, Huang J, Shi L, Shaolin MA. The role of calpains in ventilator‐induced diaphragm atrophy. Intensive Care Med Exp 2017; 5: 14.
dc.identifier.citedreferencevon Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2017. J Cachexia Sarcopenia Muscle 2017; 8: 1081 – 1083.
dc.identifier.citedreferenceLarkin LM, Davis CS, Sims‐Robinson C, Kostrominova TY, Van Remmen H, Richardson A, Feldman EL, Brooks SV. Skeletal muscle weakness due to deficiency of CuZn‐superoxide dismutase is associated with loss of functional innervation. Am J Physiol Regul Integr Comp Physiol 2011; 301: R1400 – R1407.
dc.identifier.citedreferenceAli S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options—a mini‐review. Gerontology 2014; 60: 294 – 305.
dc.identifier.citedreferenceLarsson L, Li X, Yu F, Degens H. Age‐related changes in contractile properties and expression of myosin isoforms in single skeletal muscle cells. Muscle Nerve Suppl 1997; 5: S74 – S78.
dc.identifier.citedreferenceMitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 2012; 3: 260.
dc.identifier.citedreferenceDelbono O. Expression and regulation of excitation‐contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 2011; 4: 248 – 259.
dc.identifier.citedreferenceMuller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H. Denervation‐induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1159 – R1168.
dc.identifier.citedreferenceBaylor SM, Hollingworth S. Intracellular calcium movements during excitation‐contraction coupling in mammalian slow‐twitch and fast‐twitch muscle fibers. J Gen Physiol 2012; 139: 261 – 272.
dc.identifier.citedreferenceLee CS, Dagnino‐Acosta A, Yarotskyy V, Hanna A, Lyfenko A, Knoblauch M, Georgiou DK, Poché RA, Swank MW, Long C, Ismailov II, Lanner J, Tran T, Dong K, Rodney GG, Dickinson ME, Beeton C, Zhang P, Dirksen RT, Hamilton SL. Ca(2+) permeation and/or binding to CaV1.1 fine‐tunes skeletal muscle Ca(2+) signaling to sustain muscle function. Skelet Muscle 2015; 5: 4.
dc.identifier.citedreferenceCheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol 2016; 594: 5149 – 5160.
dc.identifier.citedreferenceViner RI, Ferrington DA, Williams TD, Bigelow DJ, Schöneich C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+‐ATPase in skeletal muscle. Biochem J 1999; 340: 657 – 669.
dc.identifier.citedreferenceDelbono O. Molecular mechanisms and therapeutics of the deficit in specific force in ageing skeletal muscle. Biogerontology 2002; 3: 265 – 270.
dc.identifier.citedreferencePlant DR, Lynch GS. Excitation‐contraction coupling and sarcoplasmic reticulum function in mechanically skinned fibres from fast skeletal muscles of aged mice. J Physiol 2002; 543: 169 – 176.
dc.identifier.citedreferenceIngalls CP, Warren GL, Williams JH, Ward CW, Armstrong RB. EC coupling failure in mouse EDL muscle after in vivo eccentric contractions. J Appl Physiol (1985) 1998; 85: 58 – 67.
dc.identifier.citedreferenceManring H, Abreu E, Brotto L, Weisleder N, Brotto M. Novel excitation‐contraction coupling related genes reveal aspects of muscle weakness beyond atrophy‐new hopes for treatment of musculoskeletal diseases. Front Physiol 2014; 5: 37.
dc.identifier.citedreferenceJackson MJ. Lack of CuZnSOD activity: a pointer to the mechanisms underlying age‐related loss of muscle function, a commentary on “absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age‐dependent skeletal muscle atrophy”. Free Radic Biol Med 2006; 40: 1900 – 1902.
dc.identifier.citedreferenceIvannikov MV, Van Remmen H. Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild‐type mice. Free Radic Biol Med 2015; 84: 254 – 262.
dc.identifier.citedreferenceLarkin LM, Hanes MC, Kayupov E, Claflin DR, Faulkner JA, Brooks SV. Weakness of whole muscles in mice deficient in Cu, Zn superoxide dismutase is not explained by defects at the level of the contractile apparatus. Age (Dordr) 2013; 35: 1173 – 1181.
dc.identifier.citedreferenceDelbono O. Calcium current activation and charge movement in denervated mammalian skeletal muscle fibres. J Physiol 1992; 451: 187 – 203.
dc.identifier.citedreferenceRay A, Kyselovic J, Leddy JJ, Wigle JT, Jasmin BJ, Tuana BS. Regulation of dihydropyridine and ryanodine receptor gene expression in skeletal muscle. Role of nerve, protein kinase C, and cAMP pathways. J Biol Chem 1995; 270: 25837 – 25844.
dc.identifier.citedreferenceKern H, Boncompagni S, Rossini K, Mayr W, Fanò G, Zanin ME, Podhorska‐Okolow M, Protasi F, Carraro U. Long‐term denervation in humans causes degeneration of both contractile and excitation‐contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 2004; 63: 919 – 931.
dc.identifier.citedreferenceSakellariou GK, Pye D, Vasilaki A, Zibrik L, Palomero J, Kabayo T, McArdle F, Van Remmen H, Richardson A, Tidball JG, McArdle A, Jackson MJ. Role of superoxide‐nitric oxide interactions in the accelerated age‐related loss of muscle mass in mice lacking Cu,Zn superoxide dismutase. Aging Cell 2011; 10: 749 – 760.
dc.identifier.citedreferenceSmith IC, Vigna C, Levy AS, Denniss SG, Rush JW, Tupling AR. The effects of buthionine sulfoximine treatment on diaphragm contractility and SERCA pump function in adult and middle aged rats. Physiol Rep 2015; 3: e12547.
dc.identifier.citedreferenceElchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005; 24: 367 – 380.
dc.identifier.citedreferenceZhang Y, Ikeno Y, Bokov A, Gelfond J, Jaramillo C, Zhang H‐M, Liu Y, Qi W, Hubbard G, Richardson A, Van Remmen H. Dietary restriction attenuates the accelerated aging phenotype of Sod1(−/−) mice. Free Radic Biol Med 2013; 60: 300 – 306.
dc.identifier.citedreferenceRoberts BM, Frye GS, Ahn B, Ferreira LF, Judge AR. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle. Biochem Biophys Res Commun 2013; 435: 488 – 492.
dc.identifier.citedreferenceClaflin DR, Brooks SV. Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy. Am J Physiol Cell Physiol 2008; 294: C651 – C658.
dc.identifier.citedreferenceFu MH, Tupling AR. Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK‐293 cells during heat stress. Am J Physiol Heart Circ Physiol 2009; 296: H1175 – H1183.
dc.identifier.citedreferenceSupinski GS, Wang W, Callahan LA. Caspase and calpain activation both contribute to sepsis‐induced diaphragmatic weakness. J Appl Physiol 1985 ), 2009; 107: 1389 – 1396.
dc.identifier.citedreferenceBrachmanski M, Gebhard MM, Nobiling R. Separation of fluorescence signals from Ca2+ and NADH during cardioplegic arrest and cardiac ischemia. Cell Calcium 2004; 35: 381 – 391.
dc.identifier.citedreferenceJobsis FF, Stainsby WN. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 1968; 4: 292 – 300.
dc.identifier.citedreferenceClaflin DR, Jackson MJ, Brooks SV. Age affects the contraction‐induced mitochondrial redox response in skeletal muscle. Front Physiol 2015; 6: 21.
dc.identifier.citedreferenceGee KR, Brown KA, Chen WN, Bishop‐Stewart J, Gray D, Johnson I. Chemical and physiological characterization of fluo‐4 Ca(2+)‐indicator dyes. Cell Calcium 2000; 27: 97 – 106.
dc.identifier.citedreferenceKonishi M, Hollingworth S, Harkins AB, Baylor SM. Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra. J Gen Physiol 1991; 97: 271 – 301.
dc.identifier.citedreferenceAhn B, Rhee SG, Stadtman ER. Use of fluorescein hydrazide and fluorescein thiosemicarbazide reagents for the fluorometric determination of protein carbonyl groups and for the detection of oxidized protein on polyacrylamide gels. Anal Biochem 1987; 161: 245 – 257.
dc.identifier.citedreferenceDyar KA, Ciciliot S, Wright LE, Biensø RS, Tagliazucchi GM, Patel VR, Forcato M, Paz MI, Gudiksen A, Solagna F, Albiero M, Moretti I, Eckel‐Mahan KL, Baldi P, Sassone‐Corsi P, Rizzuto R, Bicciato S, Pilegaard H, Blaauw B, Schiaffino S. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 2014; 3: 29 – 41.
dc.identifier.citedreferenceMuller FL, Song W, Liu Y, Chaudhuri A, Pieke‐Dahl S, Strong R, Huang TT, Epstein CJ, Roberts LJ 2nd, Csete M, Faulkner JA, Van Remmen H. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age‐dependent skeletal muscle atrophy. Free Radic Biol Med 2006; 40: 1993 – 2004.
dc.identifier.citedreferenceVasilaki A, van der Meulen JH, Larkin L, Harrison DC, Pearson T, Van Remmen H, Richardson A, Brooks SV, Jackson MJ, McArdle A. The age‐related failure of adaptive responses to contractile activity in skeletal muscle is mimicked in young mice by deletion of Cu,Zn superoxide dismutase. Aging Cell 2010; 9: 979 – 990.
dc.identifier.citedreferenceShi Y, Ivannikov MV, Walsh ME, Liu Y, Zhang Y, Jaramillo CA, Macleod GT, Van Remmen H. The lack of CuZnSOD leads to impaired neurotransmitter release, neuromuscular junction destabilization and reduced muscle strength in mice. PLoS One 2014; 9: e100834.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.