Show simple item record

The analysis of alphaâ 1â antitrypsin glycosylation with direct LCâ MS/MS

dc.contributor.authorYin, Haidi
dc.contributor.authorAn, Mingrui
dc.contributor.authorSo, Pui‐kin
dc.contributor.authorWong, Melody Yee‐man
dc.contributor.authorLubman, David M.
dc.contributor.authorYao, Zhongping
dc.date.accessioned2018-11-20T15:31:58Z
dc.date.available2019-11-01T15:10:32Zen
dc.date.issued2018-09
dc.identifier.citationYin, Haidi; An, Mingrui; So, Pui‐kin ; Wong, Melody Yee‐man ; Lubman, David M.; Yao, Zhongping (2018). "The analysis of alphaâ 1â antitrypsin glycosylation with direct LCâ MS/MS." ELECTROPHORESIS 39(18): 2351-2361.
dc.identifier.issn0173-0835
dc.identifier.issn1522-2683
dc.identifier.urihttps://hdl.handle.net/2027.42/146302
dc.description.abstractA liquid chromatographyâ tandem mass spectrometry (LCâ MS/MS)â based methodology has been developed to differentiate coreâ and antennaryâ fucosylated glycosylation of glycopeptides. Both the glycosylation sites (heterogeneity) and multiple possible glycan occupancy at each site (microheterogeneity) can be resolved via intact glycopeptide analysis. The serum glycoprotein alphaâ 1â antitrypsin (A1AT) which contains both coreâ and antennaryâ fucosylated glycosites was used in this study. Sialidase was used to remove the sialic acids in order to simplify the glycosylation microheterogeneity and to enhance the MS signal of glycopeptides with similar glycan structures. β1â 3,4 galactosidase was used to differentiate coreâ and antennaryâ fucosylation. Inâ source dissociation was found to severely affect the identification and quantification of glycopeptides with low abundance glycan modification. The settings of the mass spectrometer were therefore optimized to minimize the inâ source dissociation. A threeâ step mass spectrometry fragmentation strategy was used for glycopeptide identification, facilitated by pGlyco software annotation and manual checking. The collision energy used for initial glycopeptide fragmentation was found to be crucial for improved detection of oxonium ions and better selection of Y1 ion (peptide+GlcNAc). Structural assignments revealed that all three glycosylation sites of A1AT glycopeptides contain complex Nâ glycan structures: site Asn70 contains biantennary glycans without fucosylation; site Asn107 contains biâ , triâ and tetraâ antennary glycans with both coreâ and antennaryâ fucosylation; site Asn271 contains biâ and triâ antennary glycans with both coreâ and antennaryâ fucosylation. The relative intensity of coreâ and antennaryâ fucosylation on Asn107 was similar to that of the A1AT protein indicating that the glycosylation level of Asn107 is much larger than the other two sites.
dc.publisherCold Spring Harbor Laboratory Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAlphaâ 1â antitrypsin
dc.subject.otherFucosylation
dc.subject.otherInâ source collisionâ induced dissociation
dc.subject.otherMass spectrometry
dc.titleThe analysis of alphaâ 1â antitrypsin glycosylation with direct LCâ MS/MS
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146302/1/elps6432_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146302/2/elps6432.pdf
dc.identifier.doi10.1002/elps.201700426
dc.identifier.sourceELECTROPHORESIS
dc.identifier.citedreferenceComunale, M. A., Rodemichâ Betesh, L., Hafner, J., Wang, M., Norton, P., Di Bisceglie, A. M., Block, T., Mehta, A., PloS One 2010, 5, e12419.
dc.identifier.citedreferenceLiang, Y., Ma, T., Thakur, A., Yu, H., Gao, L., Shi, P., Li, X., Ren, H., Jia, L., Zhang, S., Li, Z., Chen, M., Glycobiology 2015, 25, 331 â 340.
dc.identifier.citedreferenceMcCarthy, C., Saldova, R., Wormald, M. R., Rudd, P. M., McElvaney, N. G., Reeves, E. P., J Proteome Res 2014, 13, 3131 â 3143.
dc.identifier.citedreferenceYin, H., Tan, Z., Wu, J., Zhu, J., Shedden, K. A., Marrero, J., Lubman, D. M., J Proteome Res 2015, 14, 4876 â 4884.
dc.identifier.citedreferenceCeroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S. M., J Proteome Res 2008, 7, 1650 â 1659.
dc.identifier.citedreferenceMa, C., Zhang, Q., Qu, J., Zhao, X., Li, X., Liu, Y., Wang, P. G., J Proteomics 2015, 114, 61 â 70.
dc.identifier.citedreferenceYu, Q., Wang, B., Chen, Z., Urabe, G., Glover, M. S., Shi, X., Guo, L. W., Kent, K. C., Li, L., J. Am. Soc. Mass Spectrom. 2017.
dc.identifier.citedreferenceBern, M., Kil, Y. J., Becker, C., Current Protocols in Bioinformatics, Chapter 13, Unit13 20, 2012.
dc.identifier.citedreferenceSun, S., Shah, P., Eshghi, S. T., Yang, W., Trikannad, N., Yang, S., Chen, L., Aiyetan, P., Hoti, N., Zhang, Z., Chan, D. W., Zhang, H., Nat. Biotechnol. 2016, 34, 84 â 88.
dc.identifier.citedreferenceLiu, M. Q., Zeng, W. F., Fang, P., Cao, W. Q., Liu, C., Yan, G. Q., Zhang, Y., Peng, C., Wu, J. Q., Zhang, X. J., Tu, H. J., Chi, H., Sun, R. X., Cao, Y., Dong, M. Q., Jiang, B. Y., Huang, J. M., Shen, H. L., Wong, C. C. L., He, S. M., Yang, P. Y., Nat. Communications 2017, 8, 438.
dc.identifier.citedreferenceZeng, W. F., Liu, M. Q., Zhang, Y., Wu, J. Q., Fang, P., Peng, C., Nie, A., Yan, G., Cao, W., Liu, C., Chi, H., Sun, R. X., Wong, C. C., He, S. M., Yang, P., Scientific Reports 2016, 6, 25102.
dc.identifier.citedreferencePompach, P., Ashline, D. J., Brnakova, Z., Benicky, J., Sanda, M., Goldman, R., J Proteome Res 2014, 13, 5561 â 5569.
dc.identifier.citedreferenceWuhrer, M., Koeleman, C. A., Hokke, C. H., Deelder, A. M., Rapid Communications Mass Spectrometr. 2006, 20, 1747 â 1754.
dc.identifier.citedreferenceVeillon, L., Huang, Y., Peng, W., Dong, X., Cho, B. G., Mechref, Y., Electrophoresis 2017, 38, 2100 â 2114.
dc.identifier.citedreferenceYin, H., Zhu, J., Wu, J., Tan, Z., An, M., Zhou, S., Mechref, Y., Lubman, D. M., Electrophoresis 2016, 37, 2624 â 2632.
dc.identifier.citedreferenceChristiansen, M. N., Chik, J., Lee, L., Anugraham, M., Abrahams, J. L., Packer, N. H., Proteomics 2014, 14, 525 â 546.
dc.identifier.citedreferencePatschull, A. O., Segu, L., Nyon, M. P., Lomas, D. A., Nobeli, I., Barrett, T. E., Gooptu, B., Acta Crystallographica Section F, Structural Biology Crystallization Communications 2011, 67, 1492 â 1497.
dc.identifier.citedreferenceEliuk, S., Soltero, N., Remes, P., Senko, M., Zabrouskov, V., 13 Human Proteome Organization World Congress, Madrid, 2014, pp. 791 â P.
dc.identifier.citedreferenceMurray, K., Boyd, R., Eberlin, M., Langley, G., Li, L. and Naito, Y., Pure Applied Chem. 2013, 85, 1515 â 1609.
dc.identifier.citedreferenceBones, J., Mittermayr, S., O’Donoghue, N., Guttman, A., Rudd, P. M., Anal Chem 2010, 82, 10208 â 10215.
dc.identifier.citedreferenceVarki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., Etzler, M. E., Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, New York 2008.
dc.identifier.citedreferencePompach, P., Brnakova, Z., Sanda, M., Wu, J., Edwards, N., Goldman, R., Mol. Cell. Proteomics 2013, 12, 1281 â 1293.
dc.identifier.citedreferenceMarrero, J. A., Feng, Z. D., Wang, Y. H., Nguyen, M. H., Befeler, A. S., Roberts, L. R., Reddy, K. R., Harnois, D., Llovet, J. M., Normolle, D., Dalhgren, J., Chia, D., Lok, A. S., Wagner, P. D., Srivastava, S., Schwartz, M., Gastroenterology 2009, 137, 110 â 118.
dc.identifier.citedreferenceGoonetilleke, K. S., Siriwardena, A. K., European J. Surg. Oncol. 2007, 33, 266 â 270.
dc.identifier.citedreferenceGuttman, A., Electrophoresis 1997, 18, 1136 â 1141.
dc.identifier.citedreferenceSzigeti, M., Bondar, J., Gjerde, D., Keresztessy, Z., Szekrenyes, A., Guttman, A., J. Chromatogr. 2016, 1032, 139 â 143.
dc.identifier.citedreferenceDesaire, H., Mol. Cell. Proteomics 2013, 12, 893 â 901.
dc.identifier.citedreferenceChandler, K. B., Costello, C. E., Electrophoresis 2016, 37, 1407 â 1419.
dc.identifier.citedreferenceWuhrer, M., Catalina, M. I., Deelder, A. M., Hokke, C. H., J. Chromatogr. 2007, 849, 115 â 128.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.