Show simple item record

Functional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients

dc.contributor.authorLamothe, Karl A.
dc.contributor.authorAlofs, Karen M.
dc.contributor.authorJackson, Donald A.
dc.contributor.authorSomers, Keith M.
dc.date.accessioned2018-11-20T15:32:01Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationLamothe, Karl A.; Alofs, Karen M.; Jackson, Donald A.; Somers, Keith M. (2018). "Functional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients." Diversity and Distributions 24(11): 1612-1626.
dc.identifier.issn1366-9516
dc.identifier.issn1472-4642
dc.identifier.urihttps://hdl.handle.net/2027.42/146304
dc.description.abstractAimFunctional redundancy occurs when species share overlapping ecological functions and is considered an important component of ecosystem resilience. However, much of what we know about functional redundancy comes from relatively species‐rich terrestrial and marine environments. Here, we examined patterns of functional redundancy among Ontario freshwater fish communities with species richness levels ranging from 4 to 30 species across lakes of differing size, depth, productivities and thermal characteristics.LocationSix thousand nine hundred and seventy‐seven lakes in Ontario, Canada.MethodsWe examined functional redundancy by quantifying the relationship between functional diversity and species richness in lakes across Ontario and within smaller biogeographic regions. We used null models to test whether fish communities had greater redundancy than expected from random assemblages. We then used generalized additive models (GAMs) to predict how patterns of redundancy vary across environmental variables. At last, we compared species‐level functional rarity metrics across fish thermal preference groups, body sizes and species occurrence rates.ResultsThe functional diversity and species richness relationship were saturating among fish communities at the provincial scale but varied between smaller regions with differing biogeographic histories. Most communities fell within expectations from weighted null models of the functional diversity and species richness relationship. The GAMs indicated that fish communities in the largest, deepest and warmest lakes showed the greatest overall functional redundancy. No differences were observed in functional rarity measures between thermal preference groups, across body sizes or across species occurrence rates.Main conclusionsAlthough lakes in this study were relatively depauperate of fish species, Ontario fish communities exhibited functional redundancy at the provincial scale, with variation regionally. North‐eastern communities showed the least saturating relationship overall as predicted by historical biogeographic patterns of freshwater fish colonization. Overall, this study provides a broad perspective of freshwater fish diversity patterns and highlights the importance of investigating redundancy from different perspectives and multiple spatial scales.
dc.publisherOntario Ministry of Natural Resources, Fisheries Branch
dc.publisherWiley Periodicals, Inc.
dc.subject.otherresilience
dc.subject.otherOntario
dc.subject.otherfunctional redundancy
dc.subject.otherfunctional diversity
dc.subject.otherfreshwater fish
dc.titleFunctional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146304/1/ddi12812_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146304/2/ddi12812.pdf
dc.identifier.doi10.1111/ddi.12812
dc.identifier.sourceDiversity and Distributions
dc.identifier.citedreferenceOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., … Wagner, H. ( 2016 ). vegan: Community ecology package. R package version 2.3‐5.
dc.identifier.citedreferenceRicotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B. E. L., & Pavoine, S. ( 2016 ). Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution, 7, 1386 – 1395. https://doi.org/10.1111/2041-210X.12604
dc.identifier.citedreferenceRosenfeld, J. S. ( 2002 ). Functional redundancy in ecology and conservation. Oikos, 98, 156 – 162. https://doi.org/10.1034/j.1600-0706.2002.980116.x
dc.identifier.citedreferenceRudolf, V. H. W., & Rasmussen, N. L. ( 2013 ). Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology, 94, 1046 – 1056. https://doi.org/10.1890/12-0378.1
dc.identifier.citedreferenceSasaki, T., Okubo, S., Okayasu, T., Jamsran, U., Ohkuro, T., & Takeuchi, K. ( 2009 ). Two‐phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology, 90, 2598 – 2608. https://doi.org/10.1890/08-1850.1
dc.identifier.citedreferenceSchindler, D. W., Bayley, S. E., Parker, B. R., Beaty, K. G., Cruikshank, D. R., Fee, E. J., … Stainton, M. P. ( 1996 ). The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography, 41, 1004 – 1017. https://doi.org/10.4319/lo.1996.41.5.1004
dc.identifier.citedreferenceSchleuter, D., Faufresne, M., Massol, F., & Argillier, C. ( 2010 ). A user’s guide to functional diversity indices. Ecological Monographs, 80, 469 – 484. https://doi.org/10.1890/08-2225.1
dc.identifier.citedreferenceSchmera, D., Heino, J., Podani, J., Erős, T., & Delédec, S. ( 2017 ). Functional diversity: A review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia, 787, 27 – 44. https://doi.org/10.1007/s10750-016-2974-5
dc.identifier.citedreferenceShuter, B. J., MacLean, J. A., Fry, F. E. J., & Regier, H. A. ( 1980 ). Stochastic simulation of temperature effects of first‐year survival of smallmouth bass. Transactions of the American Fisheries Society, 109, 1 – 34. https://doi.org/10.1577/1548-8659(1980)109<1:SSOTEO>2.0.CO;2
dc.identifier.citedreferenceSiefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., … Wardle, D. A. ( 2015 ). A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406 – 1419. https://doi.org/10.1111/ele.12508
dc.identifier.citedreferenceStandish, R. J., Hobbs, R. J., Mayfield, M. M., Bestelmeyer, B. T., Suding, K. N., Battaglia, L. L., … Thomas, P. A. ( 2014 ). Resilience in ecology: Abstraction, distraction, or where the action is? Biological Conservation, 177, 43 – 51. https://doi.org/10.1016/j.biocon.2014.06.008
dc.identifier.citedreferenceThompson, I., Mackey, B., McNulty, S., & Mosseler, A. ( 2009 ). Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43, 67 pages.
dc.identifier.citedreferenceTonn, W. M., & Magnuson, J. J. ( 1982 ). Patterns in species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology, 63, 1149 – 1166. https://doi.org/10.2307/1937251
dc.identifier.citedreferenceToussaint, A., Charpin, N., Brosse, S., & Villéger, S. ( 2016 ). Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports, 6, 22125. https://doi.org/10.1038/srep22125
dc.identifier.citedreferencevan der Linden, P., Patrício, J., Marchini, A., Cid, N., Neto, J. M., & Marques, J. C. ( 2012 ). A biological trait approach to assess the functional composition of subtidal benthic communities in an estuarine ecosystem. Ecological Indicators, 20, 121 – 133. https://doi.org/10.1016/j.ecolind.2012.02.004
dc.identifier.citedreferenceVenturelli, P. A., Lester, N. P., Marshall, T. R., & Shuter, B. J. ( 2010 ). Consistent patterns of maturity and density‐dependent growth among populations of walleye ( Sander vitreus ): Application of the growing degree‐day metric. Canadian Journal of Fisheries and Aquatic Sciences, 67, 1057 – 1067. https://doi.org/10.1139/F10-041
dc.identifier.citedreferenceVilléger, S., Mason, N. W. H., & Mouillot, D. ( 2008 ). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290 – 2301. https://doi.org/10.1890/07-1206.1
dc.identifier.citedreferenceViolle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., … Mouillot, D. ( 2017 ). Functional rarity: The ecology of outliers. Trends in Ecology and Evolution, 32, 356 – 367. https://doi.org/10.1016/j.tree.2017.02.002
dc.identifier.citedreferenceWalker, B. ( 1992 ). Biological diversity and ecological redundancy. Conservation Biology, 6, 18 – 23. https://doi.org/10.1046/j.1523-1739.1992.610018.x
dc.identifier.citedreferenceWickham, H. ( 2009 ). ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer‐Verlag. https://doi.org/10.1007/978-0-387-98141-3
dc.identifier.citedreferenceWinemiller, K. O., Fitzgerald, D. B., Bower, L. M., & Pianka, E. R. ( 2015 ). Functional traits, convergent evolution, and period tables of niches. Ecology Letters, 18, 737 – 751. https://doi.org/10.1111/ele.12462
dc.identifier.citedreferenceWood, S. N. ( 2011 ). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society Series B Statistical Methodology, 73, 3 – 36. https://doi.org/10.1111/j.1467-9868.2010.00749.x
dc.identifier.citedreferenceWoodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. ( 2005 ). Body size in ecological networks. Trends in Ecology and Evolution, 20, 402 – 409. https://doi.org/10.1016/j.tree.2005.04.005
dc.identifier.citedreferenceYachi, S., & Loreau, M. ( 1999 ). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. PNAS, 96, 1463 – 1468. https://doi.org/10.1073/pnas.96.4.1463
dc.identifier.citedreferenceAllen, C. R., Angeler, D. G., Cumming, G. S., Folke, C., Twidwell, D., & Uden, D. R. ( 2016 ). Quantifying spatial resilience. Journal of Applied Ecology, 53, 625 – 635. https://doi.org/10.1111/1365-2664.12634
dc.identifier.citedreferenceAlofs, K. M. ( 2016 ). The influence of variability in species trait data on community‐level ecological prediction and inference. Ecology and Evolution, 6, 6345 – 6353. https://doi.org/10.1002/ece3.2385
dc.identifier.citedreferenceAlofs, K. M., & Jackson, D. A. ( 2015 ). The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada. Global Change Biology, 21, 2227 – 2237. https://doi.org/10.1111/gcb.12853
dc.identifier.citedreferenceAlofs, K. M., Jackson, D. A., & Lester, N. P. ( 2014 ). Ontario freshwater fishes demonstrate differing range‐boundary shifts in a warming climate. Diversity and Distributions, 20, 123 – 136. https://doi.org/10.1111/ddi.12130
dc.identifier.citedreferenceAnderson, M. J. ( 2006 ). Distance‐based tests for homogeneity of multivariate dispersion. Biometrics, 62, 245 – 253. https://doi.org/10.1111/j.1541-0420.2005.00440.x
dc.identifier.citedreferenceAngeler, D. G., & Allen, C. R. ( 2016 ). Quantifying resilience. Journal of Applied Ecology, 53, 617 – 624. https://doi.org/10.1111/1365-2664.12649
dc.identifier.citedreferenceAngeler, D. G., Allen, C. R., Barichievy, C., Eason, T., & Garmestani, A. J. ( 2016 ). Management applications of discontinuity theory. Journal of Applied Ecology, 53, 688 – 698. https://doi.org/10.1111/1365-2664.12494
dc.identifier.citedreferenceAwiti, A. O. ( 2011 ). Biological diversity and resilience: Lessons from the recovery of cichlid species in Lake Victoria. Ecology and Society, 16, 9. https://doi.org/10.5751/ES-03877-160109
dc.identifier.citedreferenceBellwood, D. R., Hoey, A. S., & Choat, J. H. ( 2003 ). Limited functional redundancy in high diversity systems: Resilience and ecosystem function of coral reefs. Ecology Letters, 6, 281 – 285. https://doi.org/10.1046/j.1461-0248.2003.00432.x
dc.identifier.citedreferenceBendell, B. E., & McNicol, D. K. ( 1987 ). Cyprinid assemblages, and the physical and chemical characteristics of small northern Ontario lakes. Environmental Biology of Fishes, 19, 229 – 234. https://doi.org/10.1007/BF00005352
dc.identifier.citedreferenceBiswas, S. R., Vogt, R. J., & Sharma, S. ( 2017 ). Projected compositional shifts and loss of ecosystem services in freshwater fish communities under climate change scenarios. Hydrobiologia, 799, 135 – 149. https://doi.org/10.1007/s10750-017-3208-1
dc.identifier.citedreferenceBlueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., & Sams, S. ( 1978 ). Relationships between body size and some life history parameters. Oecologia, 37, 257 – 272. https://doi.org/10.1007/BF00344996
dc.identifier.citedreferenceBotta‐Dukát, Z. ( 2005 ). Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533 – 540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x
dc.identifier.citedreferenceBowlby, J. N., & Green, D. ( 1987 ). Efficiency of aquatic habitat inventory surveys in the assessment of fish species present. (30 pp.) Ontario Ministry of Natural Resources. Ontario Fisheries Acidification Report Series No. 87–08.
dc.identifier.citedreferenceBruno, D., Gutiérrez‐Cánovas, C., Velasco, J., & Sánchez‐Fernández, D. ( 2016 ). Functional redundancy as a tool for bioassessment: A test using riparian vegetation. Science of the Total Environment, 566–567, 1268 – 1276. https://doi.org/10.1016/j.scitotenv.2016.05.186
dc.identifier.citedreferenceBuisson, L., & Grenouillet, G. ( 2009 ). Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions, 15, 613 – 626. https://doi.org/10.1111/j.1472-4642.2009.00565.x
dc.identifier.citedreferenceBuisson, L., Grenouillet, G., Villéger, S., Canal, J., & Laffaille, P. ( 2013 ). Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology, 19, 387 – 400. https://doi.org/10.1111/gcb.12056
dc.identifier.citedreferenceCadotte, M. W., Carscadden, K., & Mirotchnick, T. ( 2011 ). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079 – 1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x
dc.identifier.citedreferenceCasatti, L., Teresa, F. B., de Oliveira Zeni, J., Ribeiro, M. D., Brejão, G. L., & Ceneviva‐Bastos, M. ( 2015 ). More of the same: High functional redundancy in stream fish assemblages from tropical agroecosystems. Environmental Management, 55, 1300 – 1314. https://doi.org/10.1007/s00267-015-0461-9
dc.identifier.citedreferenceCasselman, J. M., & Harvey, H. H. ( 1975 ). Selective fish mortality resulting from low winter oxygen. Verhandlungen des Internationalen Verein Limnologie, 19, 2418 – 2429.
dc.identifier.citedreferenceChapin, F. S., Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E., & Tilman, D. ( 1997 ). Biotic control over functioning of ecosystems. Science, 277, 500 – 504. https://doi.org/10.1126/science.277.5325.500
dc.identifier.citedreferenceChu, C., Jones, N. E., Mandrak, N. E., Piggott, A. R., & Minns, C. K. ( 2008 ). The influence of air temperature, groundwater discharge, and climate change on the thermal diversity of stream fishes in southern Ontario watersheds. Canadian Journal of Fisheries and Aquatic Sciences, 65, 297 – 308. https://doi.org/10.1139/f08-007
dc.identifier.citedreferenceChu, C., Mandrak, N. E., & Minns, C. K. ( 2005 ). Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity and Distributions, 11, 299 – 310. https://doi.org/10.1111/j.1366-9516.2005.00153.x
dc.identifier.citedreferenceCleveland, W. S., Devlin, S. J., & Grosse, E. ( 1988 ). Regression by local fitting: Methods, properties, and computational algorithms. Journal of Econometrics, 37, 87 – 114. https://doi.org/10.1016/0304-4076(88)90077-2
dc.identifier.citedreferenceCoker, G. A., Portt, C. B., & Minns, C. K. ( 2001 ). Morphological and ecological characteristics of Canadian freshwater fishes. Canada Manuscript Report of Fisheries and Aquatic Sciences, 2554, pp. iv–89.
dc.identifier.citedreferenceCornwell, W. K., Schwilk, D. W., & Ackerly, D. D. ( 2006 ). A trait‐based test for habitat filtering: Convex hull volume. Ecology, 87, 1465 – 1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
dc.identifier.citedreferenceCrossman, J., Eimers, M. C., Kerr, J. G., & Yao, H. ( 2016 ). Sensitivity of physical lake processes to climate change within a large Precambrian Shield catchment. Hydrological Processes, 30, 4353 – 4366. https://doi.org/10.1002/hyp.10915
dc.identifier.citedreferenceDarwin, C. ( 1859 ). On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London, UK.
dc.identifier.citedreferencede Bello, F., Lepš, J., Lavorel, S., & Moretti, M. ( 2007 ). Importance of species abundance for assessment of trait composition: An example based on pollinator communities. Community Ecology, 8, 163 – 170. https://doi.org/10.1556/ComEc.8.2007.2.3
dc.identifier.citedreferenceDodge, D. P., Tilt, J. C., MacRitchie, I., Goodchild, G. A., & Waldriff, D. G. ( 1985 ). Manual of instructions: Aquatic habitat inventory surveys. Toronto, ON: Ontario Ministry of Natural Resources, Fisheries Branch.
dc.identifier.citedreferenceDodson, S. I., Arnott, S. E., & Cottingham, K. L. ( 2000 ). The relationship in lake communities between primary productivity and species richness. Ecology, 81, 2662 – 2679. https://doi.org/10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2
dc.identifier.citedreferenceDowning, A. L., & Leibold, M. A. ( 2010 ). Species richness facilitates ecosystem resilience in aquatic food webs. Freshwater Biology, 55, 2123 – 2137. https://doi.org/10.1111/j.1365-2427.2010.02472.x
dc.identifier.citedreferenceEadie, J. M., Hurly, T. A., Montgomerie, R. D., & Teather, K. L. ( 1986 ). Lakes and rivers as islands: Species‐area relationships in the fish faunas of Ontario. Environmental Biology of Fishes, 15, 81 – 89. https://doi.org/10.1007/BF00005423
dc.identifier.citedreferenceEakins, R. J. ( 2017 ). Ontario freshwater fishes life history database. Version 4.74. Online database. Retrieved from http://www.ontariofishes.ca.
dc.identifier.citedreferenceErös, T., Heino, J., Schmera, D., & Rask, M. ( 2009 ). Characterising functional trait diversity and trait‐environment relationships in fish assemblages of boreal lakes. Freshwater Biology, 54, 1788 – 1803. https://doi.org/10.1111/j.1365-2427.2009.02220.x
dc.identifier.citedreferenceFolke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. ( 2004 ). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557 – 581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
dc.identifier.citedreferenceFrimpong, E. A., & Angermeier, P. L. ( 2009 ). FishTraits: A database of ecological and life‐history traits of freshwater fishes of the United States. Fisheries, 34, 487 – 495. https://doi.org/10.1577/1548-8446-34.10.487
dc.identifier.citedreferenceGerisch, M. ( 2014 ). Non‐random patterns of functional redundancy revealed in ground beetle communities facing an extreme flood event. Functional Ecology, 28, 1504 – 1512. https://doi.org/10.1111/1365-2435.12272
dc.identifier.citedreferenceGiller, P. S., Hillebrand, H., Berninger, U. G., Gessner, M. O., Hawkins, S., Inchausti, P., … O’Mullan, G. ( 2004 ). Biodiversity effects on ecosystem functioning: Emerging issues and their experimental test in aquatic environments. Oikos, 104, 423 – 436. https://doi.org/10.1111/j.0030-1299.2004.13253.x
dc.identifier.citedreferenceGrenié, M., Denelle, P., & Tucker, C. ( 2016 ). funrar: Functional rarity indices computation. R package version 1.0.2. Retrieved from https://CRAN.R-project.org/package=funrar.
dc.identifier.citedreferenceGrenié, M., Denelle, P., Tucker, C., Munoz, F., & Violle, C. ( 2017 ). funrar: An R package to characterize functional rarity. Diversity and Distributions, 23, 1365 – 1371. https://doi.org/10.1111/ddi.12629
dc.identifier.citedreferenceGuerrero, I., Carmona, C. P., Morales, M. B., Oñate, J. J., & Peco, B. ( 2014 ). Non‐linear responses of functional diversity and redundancy to agricultural intensification at the field scale in Mediterranean arable plant communities. Agriculture, Ecosystems and Environment, 195, 36 – 43. https://doi.org/10.1016/j.agee.2014.05.021
dc.identifier.citedreferenceGuillemot, N., Kulbicki, M., Chabanet, P., & Vigliola, L. ( 2011 ). Functional redundancy patterns reveal non‐random assembly rules in a species‐rich marine assemblage. PLoS ONE, 6, e26375. https://doi.org/10.1371/journal.pone.0026735
dc.identifier.citedreferenceHaddad, N. M., Holyoak, M., Davies, K. F., Melbourne, B. A., & Preston, K. ( 2008 ). Species’ traits predict the effects of disturbance and productivity on diversity. Ecology Letters, 11, 348 – 356. https://doi.org/10.1111/j.1461-0248.2007.01149.x
dc.identifier.citedreferenceHarnik, P. G., Simpson, C., & Payne, J. L. ( 2012 ). Long‐term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society B: Biological Sciences, 279, 4969 – 4976. https://doi.org/10.1098/rspb.2012.1902
dc.identifier.citedreferenceHarvey, H. H. ( 1975 ). Fish populations in a large group of acid‐stressed lakes. Verhandlungen des Internationalen Verein Limnologie, 19, 2406 – 2417.
dc.identifier.citedreferenceHarvey, H. H. ( 1978 ). The fish communities of the Manitoulin Island lakes. Verhandlungen des Internationalen Verein Limnologie, 20, 2031 – 2038.
dc.identifier.citedreferenceHarvey, H. H. ( 1982 ). Population responses of fishes in acidified waters. In R. E. Johnston (Ed.), Acid rain/fisheries (pp. 227 – 241 ). Proceedings of an International Symposium of Acidic Precipitation and Fishery Impacts in Northeastern North America. Bethesda, MD: American Fisheries Society.
dc.identifier.citedreferenceHoey, A. S., & Bellwood, D. R. ( 2009 ). Limited functional redundancy in a high diversity system: Single species dominates key ecological process on coral reefs. Ecosystems, 12, 1316 – 1328. https://doi.org/10.1007/s10021-009-9291-z
dc.identifier.citedreferenceHolm, E., Mandrak, N., & Burridge, M. ( 2009 ). The ROM field guide to freshwater fishes of Ontario. Toronto, ON: Royal Ontario Museum.
dc.identifier.citedreferenceHubálek, Z. ( 1982 ). Coefficients of association and similarity, based on binary (presence‐absence) data: An evaluation. Biological Reviews, 57, 669 – 689. https://doi.org/10.1111/j.1469-185X.1982.tb00376.x
dc.identifier.citedreferenceHutchinson, G. E. ( 1959 ). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145 – 159. https://doi.org/10.1086/282070
dc.identifier.citedreferenceJackson, D. A., & Harvey, H. H. ( 1989 ). Biogeographic associations in fish assemblages: Local vs. regional processes. Ecology, 70, 1472 – 1484. https://doi.org/10.2307/1938206
dc.identifier.citedreferenceJackson, D. A., & Harvey, H. H. ( 1993 ). Fish and benthic invertebrates: Community concordance and community‐environment relationships. Canadian Journal of Fisheries and Aquatic Sciences, 50, 2641 – 2651. https://doi.org/10.1139/f93-287
dc.identifier.citedreferenceJackson, D. A., & Harvey, H. H. ( 1997 ). Qualitative and quantitative sampling of lake fish communities. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2807 – 2813. https://doi.org/10.1139/f97-182
dc.identifier.citedreferenceJackson, D. A., & Mandrak, N. E. ( 2002 ). Changing fish biodiversity: Predicting the loss of cyprinid biodiversity due to global climate change. In N. A. McGinn (Ed.), Fisheries in a changing climate (pp. 89 – 98 ) American Fisheries Society Symposium 32. Bethesda, MD: American Fisheries Society.
dc.identifier.citedreferenceJackson, D. A., Peres‐Neto, P. R., & Olden, J. D. ( 2001 ). What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58, 157 – 170. https://doi.org/10.1139/f00-239
dc.identifier.citedreferenceJian, M., Flynn, D. F. B., Prager, C. M., Hart, G. M., DeVan, C. M., Ahrestani, F. S., … Naeem, S. ( 2014 ). The importance of rare species: A trait based assessment of rare species contributions to functional diversity and possible ecosystem function in tall‐grass prairies. Ecology and Evolution, 4, 104 – 112. https://doi.org/10.1002/ece3.915
dc.identifier.citedreferenceLaliberté, E., & Legendre, P. ( 2010 ). A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 91, 299 – 305. https://doi.org/10.1890/08-2244.1
dc.identifier.citedreferenceLaliberté, E., Legendre, P., & Shipley, B. ( 2014 ). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version1.0‐12.
dc.identifier.citedreferenceLaliberté, E., Wells, J. A., DeClerck, F., Metcalfe, D. J., Catterall, C. P., Queiroz, C., … Mayfield, M. M. ( 2010 ). Land‐use intensification reduces plan functional redundancy and response diversity in plant communities. Ecology Letters, 13, 76 – 86. https://doi.org/10.1111/j.1461-0248.2009.01403.x
dc.identifier.citedreferenceLarsen, S., Anderson, T., & Hessen, D. O. ( 2011 ). Climate change predicated to cause severe increase of organic carbon in lakes. Global Change Biology, 17, 1186 – 1192. https://doi.org/10.1111/j.1365-2486.2010.02257.x
dc.identifier.citedreferenceLawton, J. H., & Brown, V. K. ( 1993 ). Redundancy in ecosystems. In E. D. Schulze, & H. A. Mooney (Eds.), Biodiversity and Ecosystem Function (pp. 255 – 270 ). Berlin, Germany: Springer‐Verlag.
dc.identifier.citedreferenceLegendre, P., & De Cáceres, M. ( 2013 ). Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951 – 963. https://doi.org/10.1111/ele.12141
dc.identifier.citedreferenceLegendre, P., & Gallagher, E. D. ( 2001 ). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271 – 280. https://doi.org/10.1007/s004420100716
dc.identifier.citedreferenceLeitão, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., … Gardner, T. A. ( 2018 ). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 41, 219 – 232. https://doi.org/10.1111/ecog.02845
dc.identifier.citedreferenceLester, N. P., Marshall, T. R., Armstrong, K., Dunlop, W. I., & Ritchie, B. ( 2003 ). A broad‐scale approach to management of Ontario’s recreational fisheries. North American Journal of Fisheries Management, 23, 1312 – 1328. https://doi.org/10.1577/M01-230AM
dc.identifier.citedreferenceLoreau, M., & de Mazancourt, C. ( 2013 ). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106 – 115. https://doi.org/10.1111/ele.12073
dc.identifier.citedreferenceLyons, K. G., Brigham, C. A., Traut, B. H., & Schwartz, M. W. ( 2005 ). Rare species and ecosystem functioning. Conservation Biology, 19, 1019 – 1024. https://doi.org/10.1111/j.1523-1739.2005.00106.x
dc.identifier.citedreferenceMacArthur, R. H. ( 1955 ). Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533 – 536. https://doi.org/10.2307/1929601
dc.identifier.citedreferenceMagnuson, J. J., Webster, K. E., Assel, R. A., Bowser, C. J., Dillon, P. J., Eaton, J. G., … Quinn, F. H. ( 1997 ). Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield region. Hydrological Processes, 11, 825 – 871. https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<825::AID-HYP509>3.0.CO;2-G
dc.identifier.citedreferenceMandrak, N. E., & Crossman, E. J. ( 1992 ). Postglacial dispersal of freshwater fishes in Ontario. Canadian Journal of Zoology, 70, 2247 – 2259. https://doi.org/10.1139/z92-302
dc.identifier.citedreferenceMason, N. W. H., Irz, P., Lanoiselée, C., Mouillot, D., & Argillier, C. ( 2008 ). Evidence that niche specialization explains species‐energy relationships in lake communities. Journal of Applied Ecology, 77, 285 – 296. https://doi.org/10.1111/j.1365-2656.2007.01350.x
dc.identifier.citedreferenceMason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. ( 2005 ). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112 – 118. https://doi.org/10.1111/j.0030-1299.2005.13886.x
dc.identifier.citedreferenceMason, L. A., Riseng, C. M., Gronewold, A. D., Rutherford, E. S., Wang, J., Clites, A., … McIntyre, P. B. ( 2016 ). Fine‐scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Climatic Change, 138, 71 – 83. https://doi.org/10.1007/s10584-016-1721-2
dc.identifier.citedreferenceMatuszek, J. E., & Beggs, G. L. ( 1988 ). Fish species richness in relation to lake area, pH, and other abiotic factors in Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences, 45, 1931 – 1941. https://doi.org/10.1139/f88-225
dc.identifier.citedreferenceMcCann, K. S. ( 2000 ). The diversity‐stability debate. Nature, 405, 228 – 233. https://doi.org/10.1038/35012234
dc.identifier.citedreferenceMehner, T., Holmgren, K., Lauridsen, T. L., Jeppesen, E., & Diekmann, M. ( 2007 ). Lake depth and geographical position modify lake fish assemblages of the European ‘Central Plains’ ecoregion. Freshwater Biology, 52, 2285 – 2297. https://doi.org/10.1111/j.1365-2427.2007.01836.x
dc.identifier.citedreferenceMicheli, F., & Halpern, B. S. ( 2005 ). Low functional redundancy in coastal marine assemblages. Ecology Letters, 8, 391 – 400. https://doi.org/10.1111/j.1461-0248.2005.00731.x
dc.identifier.citedreferenceMinns, C. K. ( 1989 ). Factors affecting fish species richness in Ontario lakes. Transactions of the American Fisheries Society, 118, 533 – 545. https://doi.org/10.1577/1548-8659(1989)118<0533:FAFSRI>2.3.CO;2
dc.identifier.citedreferenceMouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. ( 2013 ). A functional approach reveals community responses to disturbance. Trends in Ecology and Evolution, 28, 167 – 177. https://doi.org/10.1016/j.tree.2012.10.004
dc.identifier.citedreferenceMouillot, D., Villégar, S., Parravicini, V., Kulbicki, M., Arias‐González, J. E., Bender, M., … Bellwood, D. R. ( 2014 ). Functional over‐redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS, 111, 13757 – 13762. https://doi.org/10.1073/pnas.1317625111
dc.identifier.citedreferenceOchiai, A. ( 1957 ). Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions. Bulletin of the Japanese Society of Scientific Fisheries (Nippon Suisan Gakkaishi), 22, 526 – 530. https://doi.org/10.2331/suisan.22.526
dc.identifier.citedreferenceParadis, E., Claude, J., & Strimmer, K. ( 2004 ). APE: Analysis of phylogenetics and evolution in R language. Bioinformatics, 20, 289 – 290. https://doi.org/10.1093/bioinformatics/btg412
dc.identifier.citedreferencePeterson, G. D., Allen, C. R., & Holling, C. S. ( 1998 ). Ecological resilience, biodiversity, and scale. Ecosystems, 1, 6 – 18. https://doi.org/10.1007/s100219900002
dc.identifier.citedreferencePoesch, M. S., Chavarie, L., Chu, C., Pandit, S. N., & Tonn, W. ( 2016 ). Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries, 41, 385 – 391. https://doi.org/10.1080/03632415.2016.1180285
dc.identifier.citedreferenceR Core Team ( 2017 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceRadinger, J., & Wolter, C. ( 2014 ). Patterns and predictors of fish dispersal in rivers. Fish and Fisheries, 15, 456 – 473. https://doi.org/10.1111/faf.12028
dc.identifier.citedreferenceRao, C. R. ( 1982 ). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24 – 43. https://doi.org/10.1016/0040-5809(82)90004-1
dc.identifier.citedreferenceRavelle, W. ( 2016 ). psych: Procedures for personality and psychological research. Evanston, IL: Northwestern University.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.