Show simple item record

MESSENGER Observations of Fast Plasma Flows in Mercury’s Magnetotail

dc.contributor.authorDewey, Ryan M.
dc.contributor.authorRaines, Jim M.
dc.contributor.authorSun, Weijie
dc.contributor.authorSlavin, James A.
dc.contributor.authorPoh, Gangkai
dc.date.accessioned2018-11-20T15:32:18Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10-16
dc.identifier.citationDewey, Ryan M.; Raines, Jim M.; Sun, Weijie; Slavin, James A.; Poh, Gangkai (2018). "MESSENGER Observations of Fast Plasma Flows in Mercury’s Magnetotail." Geophysical Research Letters 45(19): 10,110-10,118.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/146314
dc.description.abstractWe present the first observation of fast plasma flows in Mercury’s magnetotail. Mercury experiences substorm activity phenomenologically similar to Earth’s; however, field‐of‐view limitations of the Fast Imaging Plasma Spectrometer (FIPS) prevent the instrument from detecting fast flows in the plasma sheet. Although FIPS measures incomplete plasma distributions, subsonic flows impart an asymmetry on the partial plasma distribution, even if the flow directions are outside the field of view. We combine FIPS observations from 387 intervals containing magnetic field dipolarizations to mitigate these instrument limitations. By taking advantage of variations in spacecraft pointing during these intervals, we construct composite plasma distributions from which mean flows are determined. We find that dipolarizations at Mercury are embedded within fast sunward flows with an averaged speed of ~300 km/s compared to a typical background flow of ~50 km/s.Plain Language SummarySimilar to Earth, Mercury has a global magnetic field that forms a protective cavity, known as the magnetosphere, within the solar wind. The solar wind compresses the dayside magnetosphere, while stretching the nightside magnetosphere behind the planet. Variations within the solar wind cause dynamic activity within Mercury’s magnetosphere, with a process known as magnetic reconnection mediating the interaction. Magnetic reconnection changes the topology of magnetic field lines and transfers energy and momentum from the magnetic field to the plasma within it. At Earth, magnetic reconnection in the nightside magnetosphere drives fast flows of plasma toward the planet, which when nearing the planet are slowed and diverted. These flows cannot be identified directly at Mercury because of limitations of the MESSENGER spacecraft measurements collected there. This research paper develops a new statistical technique to identify and characterize these fast flows at Mercury.Key PointsMultiple FIPS plasma observations from the MESSENGER spacecraft have been combined statistically to determine average flowsObservations collected during dipolarizations produce an average plasma flow of ~300 km/s compared to ~50 km/s during background intervalsSeveral dipolarizations are required to unload Mercury’s magnetotail during a substorm, and some flows may reach the planet’s surface
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetotail
dc.subject.othersubstorm
dc.subject.otherMercury
dc.subject.otherbursty bulk flow
dc.subject.othermagnetic reconnection
dc.titleMESSENGER Observations of Fast Plasma Flows in Mercury’s Magnetotail
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146314/1/grl58028.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146314/2/grl58028_am.pdf
dc.identifier.doi10.1029/2018GL079056
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSiscoe, G. L., Ness, N. F., & Yeates, C. M. ( 1975 ). Substorms on Mercury? Journal of Geophysical Research, 80 ( 31 ), 4359 – 4363. https://doi.org/10.1029/JA080i031p04359
dc.identifier.citedreferenceLiu, J., Angelopoulos, V., Zhou, X.‐Z., & Runov, A. ( 2014 ). Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 119, 909 – 926. https://doi.org/10.1002/2013JA019395
dc.identifier.citedreferenceOhtani, S., Shay, M. A., & Mukai, T. ( 2004 ). Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two‐fluid simulations. Journal of Geophysical Research, 109, A03210. https://doi.org/10.1029/2003JA010002
dc.identifier.citedreferencePaschmann, G., Fazakerley, A. N., & Schwartz, S. J. ( 1998 ). Moments of plasma velocity distributions, Analysis Methods for Multi‐Spacecraft Data, ISSI Scientific Report,SR‐001.
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W. J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017 ). Coupling between Mercury and its nightside magnetosphere: Cross‐tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 – 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferenceRong, Z. J., Ding, Y., Slavin, J. A., Zhong, J., Poh, G., Sun, W. J., Wei, Y., Chai, L. H., Wan, W. X., & Shen, C. ( 2018 ). The magnetic field structure of Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 548 – 566. https://doi.org/10.1002/2017JA024923
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., Larson, D., Glassmeier, K.‐H., & Auster, U. ( 2009 ). THEMIS observations of an earthward‐propagating dipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., & Zhou, X.‐Z. ( 2012 ). Multipoint observations of dipolarization front formation by magnetotail reconnection. Journal of Geophysical Research, 117, A05230. https://doi.org/10.1029/2011JA017361
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Zhou, X. Z., Zhang, X. J., Li, S., Plaschke, F., & Bonnell, J. ( 2011 ). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 116, A05216. https://doi.org/10.1029/2010JA016316
dc.identifier.citedreferenceSchmid, D., Nakamura, R., Volwerk, M., Plaschke, F., Narita, Y., Baumjohann, W., Magnes, W., Fischer, D., Eichelberger, H. U., Torbert, R. B., Russell, C. T., Strangeway, R. J., Leinweber, H. K., Le, G., Bromund, K. R., Anderson, B. J., Slavin, J. A., & Kepko, E. L. ( 2016 ). A comparative study of dipolarization fronts at MMS and Cluster. Geophysical Research Letters, 43, 6012 – 6019. https://doi.org/10.1002/2016GL069520
dc.identifier.citedreferenceSergeev, V. A., Chernyaev, I. A., Angelopoulos, V., Runov, A. V., & Nakamura, R. ( 2014 ). Stopping flow bursts and their role in the generation of the substorm current wedge. Geophysical Research Letters, 41, 1106 – 1112. https://doi.org/10.1002/2014GL059309
dc.identifier.citedreferenceShiokawa, K., Baumjohann, W., & Haerendel, G. ( 1997 ). Braking of high‐speed flows in the near‐Earth tail. Geophysical Research Letters, 24 ( 10 ), 1179 – 1182. https://doi.org/10.1029/97GL01062
dc.identifier.citedreferenceSlavin, J. A., Acuna, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Travnicek, P., & Zurbuchen, T. H. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Nittler, L. R., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Starr, R. D., Travnicek, P. M., & Zurbuchen, T. H. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 – 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K. H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. Jr., & Solomon, S. C. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Parks, G. K., Liu, J., Yao, Z. H., Shi, Q. Q., Zong, Q. G., Huang, S. Y., Pu, Z. Y., & Xiao, T. ( 2013 ). Field‐aligned currents associated with dipolarization fronts. Geophysical Research Letters, 40, 4503 – 4508. https://doi.org/10.1002/grl.50902
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Wei, Y., Yao, Z. H., Rong, Z. J., Zhou, X. Z., Slavin, J. A., Wan, W. X., Zong, Q. G., Pu, Z. Y., Shi, Q. Q., & Shen, X. C. ( 2017 ). Plasma sheet pressure variations in the near‐Earth magnetotail during substorm growth phase: THEMIS observations. Journal of Geophysical Research: Space Physics, 122, 12,212 – 12,228. https://doi.org/10.1002/2017JA024603
dc.identifier.citedreferenceSun, W. J., Raines, J. M., Fu, S. Y., Slavin, J. A., Wei, Y., Poh, G. K., Pu, Z. Y., Yao, Z. H., Zong, Q. G., & Wan, W. X. ( 2017 ). MESSENGER observations of the energization and heating of protons in the near‐Mercury magnetotail. Geophysical Research Letters, 44, 8149 – 8158. https://doi.org/10.1002/2017GL074276
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., Zong, Q. G., Jia, X., Shi, Q., Shen, X., Poh, G., Pu, Z., & Zurbuchen, T. H. ( 2015 ). MESSENGER observations of Alfvénic and compressional waves during Mercury’s substorms. Geophysical Research Letters, 42, 6189 – 6198. https://doi.org/10.1002/2015GL065452
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Zong, Q. G., Imber, S. M., Shi, Q., Yao, Z., Poh, G., Gershman, D. J., Pu, Z., Sundberg, T., Anderson, B. J., Korth, H., & Baker, D. N. ( 2015 ). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophysical Research Letters, 42, 3692 – 3699. https://doi.org/10.1002/2015GL064052
dc.identifier.citedreferenceSundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H., Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research, 117, A00M03. https://doi.org/10.1029/2012JA017756
dc.identifier.citedreferenceWolf, R. A., Wan, Y., Xing, X., Zhang, J.‐C., & Sazykin, S. ( 2009 ). Entropy and plasma sheet transport. Journal of Geophysical Research, 114, A00D05. https://doi.org/10.1029/2009JA014044
dc.identifier.citedreferenceYao, Z. H., Pu, Z. Y., Fu, S. Y., Angelopoulos, V., Kubyshkina, M., Xing, X., Lyons, L., Nishimura, Y., Xie, L., Wang, X. G., Xiao, C. J., Cao, X., Liu, J., Zhang, H., Nowada, M., Zong, Q. G., Guo, R. L., Zhong, J., & Li, J. X. ( 2012 ). Mechanism of substorm current wedge formation: THEMIS observations. Geophysical Research Letters, 39, L13102. https://doi.org/10.1029/2012GL052055
dc.identifier.citedreferenceZhou, X.‐Z., Angelopoulos, V., Sergeev, V. A., & Runov, A. ( 2010 ). Accelerated ions ahead of earthward propagating dipolarization fronts. Journal of Geophysical Research, 115, A00I03. https://doi.org/10.1029/2010JA015481
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1‐4 ), 417 – 450. https://doi.org/10.1007/s11214‐007‐9246‐7
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A., & Raines, J. M. ( 2007 ). The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1‐4 ), 523 – 556. https://doi.org/10.1007/s11214‐007‐9272‐5
dc.identifier.citedreferenceAngelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Lühr, H., & Paschmann, G. ( 1992 ). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97 ( A4 ), 4027 – 4039. https://doi.org/10.1029/91JA02701
dc.identifier.citedreferenceBaker, D. N., Dewey, R. M., Lawrence, D. J., Goldsten, J. O., Peplowski, P. N., Korth, H., Slavin, J. A., Krimigis, S. M., Anderson, B. J., Ho, G. C., McNutt, R. L. Jr., Raines, J. M., Schriver, D., & Solomon, S. C. ( 2016 ). Intense energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high‐resolution observations from MESSENGER. Journal of Geophysical Research: Space Physics, 121, 2171 – 2184. https://doi.org/10.1002/2015JA021778
dc.identifier.citedreferenceBaumjohann, W., Paschmann, G., & Luhr, H. ( 1990 ). Characteristics of high-speed ion flows in the plasma sheet. Journal of Geophysical Research, 95, 3801 – 3809. https://doi.org/10.1029/JA095iA04p03801
dc.identifier.citedreferenceBirn, J., Hesse, M., Haerendel, G., Baumjohann, W., & Shiokawa, K. ( 1999 ). Flow braking and the substorm current wedge. Journal of Geophysical Research, 104 ( 19 ), 19,895 – 19,904. https://doi.org/10.1029/1999JA900173
dc.identifier.citedreferenceDewey, R. M., Raines, J. M., & Tracy, P. J. ( 2017 ). Interpreting FIPS density, temperature, and pressure, NASA Planetary Data System, MESS‐E/V/H/SW‐EPPS‐3‐FIPS‐DDR‐V2.0.
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170 – 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr., & Solomon, S. C. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., McNutt, R. L. Jr., & Solomon, S. C. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42, 9666 – 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceForsyth, C., Rae, I. J., Coxon, J. C., Freeman, M. P., Jackman, C. M., Gjerloev, J., & Fazakerley, A. N. ( 2015 ). A new technique for determining substorm onsets and phases from indices of the electrojet (SOPHIE). Journal of Geophysical Research: Space Physics, 120, 10,592 – 10,606. https://doi.org/10.1002/2015JA021343
dc.identifier.citedreferenceFu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., & Huang, S. Y. ( 2012 ). Occurrence rate of earthward‐propagating dipolarization fronts. Geophysical Research Letters, 39, L10101. https://doi.org/10.1029/2012GL051784
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2014 ). Ion kinetic properties in Mercury’s pre‐midnight plasma sheet. Geophysical Research Letters, 41, 5740 – 5747. https://doi.org/10.1002/2014GL060468
dc.identifier.citedreferenceGordeev, E., Sergeev, V., Merkin, V., & Kuznetsova, M. ( 2017 ). On the origin of plasma sheet reconfiguration during the substorm growth phase. Geophysical Research Letters, 44, 8696 – 8702. https://doi.org/10.1002/2017GL074539
dc.identifier.citedreferenceHsieh, M.‐S., & Otto, A. ( 2014 ). The influence of magnetic flux depletion on the magnetotail and auroral morphology during the substorm growth phase. Journal of Geophysical Research: Space Physics, 119, 3430 – 3443. https://doi.org/10.1002/2013JA019459
dc.identifier.citedreferenceHsu, T.‐S., & McPherron, R. L. ( 2000 ). The characteristics of storm‐time substorms and non‐storm substorms, Proceedings of the International Conference on Substorms (ICS‐5), Eur. Space Agency, Spec. Publ., ESA SP‐443, 439.
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 – 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Raines, J. M., & DiBraccio, G. A. ( 2017 ). Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with MESSENGER. Journal of Geophysical Research: Space Physics, 122, 12,153 – 12,169. https://doi.org/10.1002/2017JA024594
dc.identifier.citedreferenceKarlsson, T., Hamrin, M., Nilsson, H., Kullen, A., & Pitkänen, T. ( 2015 ). Magnetic forces associated with bursty bulk flows in Earth’s magnetotail. Geophysical Research Letters, 42, 3122 – 3128. https://doi.org/10.1002/2015GL063999
dc.identifier.citedreferenceLawrence, D. J., Anderson, B. J., Baker, D. N., Feldman, W. C., Ho, G. C., Korth, H., McNutt, R. L. Jr., Peplowski, P. N., Solomon, S. C., Starr, R. D., Vandegriff, J. D., & Winslow, R. M. ( 2015 ). Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER gamma‐ray and neutron spectrometer. Journal of Geophysical Research: Space Physics, 120, 2851 – 2876. https://doi.org/10.1002/2014JA020792
dc.identifier.citedreferenceLindsay, S. T., James, M. K., Bunce, E. J., Imber, S. M., Korth, H., Martindale, A., & Yeoman, T. K. ( 2016 ). MESSENGER X‐ray observations of magnetosphere‐surface interaction on the nightside of Mercury. Planetary and Space Science, 125, 72 – 79. https://doi.org/10.1016/j.pss.2016.03.005
dc.identifier.citedreferenceLiu, J., Angelopoulos, V., Runov, A., & Zhou, X.‐Z. ( 2013 ). On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. Journal of Geophysical Research: Space Physics, 118, 2000 – 2020. https://doi.org/10.1002/jgra.50092
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.