Show simple item record

Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose‐Derived Stromal/Stem Cell Therapies

dc.contributor.authorBateman, Marjorie E.
dc.contributor.authorStrong, Amy L.
dc.contributor.authorGimble, Jeffrey M.
dc.contributor.authorBunnell, Bruce A.
dc.date.accessioned2018-11-20T15:32:20Z
dc.date.available2019-11-01T15:10:32Zen
dc.date.issued2018-09
dc.identifier.citationBateman, Marjorie E.; Strong, Amy L.; Gimble, Jeffrey M.; Bunnell, Bruce A. (2018). "Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose‐Derived Stromal/Stem Cell Therapies." STEM CELLS 36(9): 1311-1328.
dc.identifier.issn1066-5099
dc.identifier.issn1549-4918
dc.identifier.urihttps://hdl.handle.net/2027.42/146316
dc.description.abstractThe objective of this Review is to describe the safety and efficacy of adipose stem/stromal cells (ASC) and stromal vascular fraction (SVF) in treating common diseases and the next steps in research that must occur prior to clinical use. Pubmed, Ovid Medline, Embase, Web of Science, and the Cochrane Library were searched for articles about use of SVF or ASC for disease therapy published between 2012 and 2017. One meta‐analysis, 2 randomized controlled trials, and 16 case series were included, representing 844 human patients. Sixty‐nine studies were performed in preclinical models of disease. ASCs improved symptoms, fistula healing, remission, and recurrence rates in severe cases of inflammatory bowel disease. In osteoarthritis, ASC and SVF improved symptom‐related, functional, radiographic, and histological scores. ASC and SVF were also shown to improve clinical outcomes in ischemic stroke, multiple sclerosis, myocardial ischemia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, chronic liver failure, glioblastoma, acute kidney injury, and chronic skin wounds. These effects were primarily paracrine in nature and mediated through reduction of inflammation and promotion of tissue repair. In the majority of human studies, autologous ASC and SVF from liposuction procedures were used, minimizing the risk to recipients. Very few serious, treatment‐related adverse events were reported. The main adverse event was postprocedural pain. SVF and ASC are promising therapies for a variety of human diseases, particularly for patients with severe cases refractory to current medical treatments. Further randomized controlled trials must be performed to elaborate potential safety and efficacy prior to clinical use. Stem Cells 2018;36:1311–1328Mesenchymal stem cells maintain homeostasis and may treat common diseases through homing, differentiation, and paracrine effects.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAdipose stem/stromal cells
dc.subject.otherStromal vascular fraction cells
dc.subject.otherTissue regeneration
dc.subject.otherMesenchymal stem cells
dc.subject.otherCellular therapy
dc.subject.otherAutologous stem cell transplantation
dc.subject.otherAdult stem cells
dc.titleConcise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose‐Derived Stromal/Stem Cell Therapies
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146316/1/stem2847_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146316/2/stem2847.pdf
dc.identifier.doi10.1002/stem.2847
dc.identifier.sourceSTEM CELLS
dc.identifier.citedreferenceJiang D, Qi Y, Walker NG et al. The effect of adipose tissue derived mscs delivered by a chemically defined carrier on full‐thickness cutaneous wound healing. Biomaterials 2013; 34: 2501 – 2515.
dc.identifier.citedreferenceZhang Y, Jin Y, Lin Y et al. Adipose‐derived mesenchymal stem cells ameliorate ulcerative colitis through mir‐1236 negatively regulating the expression of retinoid‐related orphan receptor gamma. DNA Cell Biol 2015; 34: 618 – 625.
dc.identifier.citedreferenceAnderson P, Souza‐Moreira L, Morell M et al. Adipose‐derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 2013; 62: 1131 – 1141.
dc.identifier.citedreferenceTakeyama H, Mizushima T, Uemura M et al. Adipose‐derived stem cells ameliorate experimental murine colitis via TSP‐1‐dependent activation of latent TGF‐beta. Digest Dis Sci 2017; 62: 1963 – 1974.
dc.identifier.citedreferenceXie M, Qin H, Luo Q et al. Comparison of adipose‐derived and bone marrow mesenchymal stromal cells in a murine model of crohn’s disease. Digest Dis Sci 2017; 62: 115 – 123.
dc.identifier.citedreferenceJung WY, Kang JH, Kim KG et al. Human adipose‐derived stem cells attenuate inflammatory bowel disease in IL‐10 knockout mice. Tissue Cell 2015; 47: 86 – 93.
dc.identifier.citedreferenceGonçalves FDC. Intravenous vs intraperitoneal mesenchymal stem cells administration: What is the best route for treating experimental colitis?. World J Gastroenterol 2014; 20: 18228 – 18239.
dc.identifier.citedreferenceChoi SA, Lee JY, Kwon SE et al. Human adipose tissue‐derived mesenchymal stem cells target brain tumor‐initiating cells. PLoS One 2015; 10: e0129292.
dc.identifier.citedreferenceMaumus M, Manferdini C, Toupet K et al. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res 2013; 11: 834 – 844.
dc.identifier.citedreferenceManferdini C, Maumus M, Gabusi E et al. Lack of anti‐inflammatory and anti‐catabolic effects on basal inflamed osteoarthritic chondrocytes or synoviocytes by adipose stem cell‐conditioned medium. Osteoarthritis and Cartilage 2015; 23: 2045 – 2057.
dc.identifier.citedreferencePagani S, Borsari V, Veronesi F et al. Increased chondrogenic potential of mesenchymal cells from adipose tissue versus bone marrow‐derived cells in osteoarthritic in vitro models. J Cell Physiol 2017; 232: 1478 – 1488.
dc.identifier.citedreferenceWang W, He N, Feng C et al. Human adipose‐derived mesenchymal progenitor cells engraft into rabbit articular cartilage. Int J Mol Sci 2015; 16: 12076 – 12091.
dc.identifier.citedreferenceMei L, Shen B, Ling P et al. Culture‐expanded allogenic adipose tissue‐derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model. PLoS One 2017; 12: e0176107.
dc.identifier.citedreferencePlatas J, Guillén MI, del Caz MDP et al. Conditioned media from adipose‐tissue‐derived mesenchymal stem cells downregulate degradative mediators induced by interleukin‐1beta in osteoarthritic chondrocytes. Mediators of Inflamm 2013; 2013: 1.
dc.identifier.citedreferenceManferdini C, Maumus M, Gabusi E et al. Adipose‐derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin e2. Arthritis Rheum 2013; 65: 1271 – 1281.
dc.identifier.citedreferenceYun S, Ku SK, Kwon YS. Adipose‐derived mesenchymal stem cells and platelet‐rich plasma synergistically ameliorate the surgical‐induced osteoarthritis in beagle dogs. J Orthop Surg Rese 2016; 11: 9.
dc.identifier.citedreferenceQayyum AA, Haack‐Sørensen M, Mathiasen AB et al. Adipose‐derived mesenchymal stromal cells for chronic myocardial ischemia (mystromalcell trial): Study design. Regen Med 2012; 7: 421 – 428.
dc.identifier.citedreferenceDíez‐Tejedor E, Gutiérrez‐Fernández M, Martínez‐Sánchez P et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double‐blind, placebo‐controlled, single‐center, pilot clinical trial. J Stroke Cerebrovasc Dis 2014; 23: 2694 – 2700.
dc.identifier.citedreferenceLarijani B, Aghayan H, Goodarzi P et al. Clinical grade human adipose tissue‐derived mesenchymal stem cell banking. Acta Med Iran 2015; 53: 540 – 546.
dc.identifier.citedreferenceWang X, Liu C, Li S et al. Effects of continuous passage on immunomodulatory properties of human adipose‐derived stem cells. Cell Tissue Bank 2015; 16: 143 – 150.
dc.identifier.citedreferenceRoemeling‐van Rhijn M, de Klein A, Douben H et al. Culture expansion induces non‐tumorigenic aneuploidy in adipose tissue‐derived mesenchymal stromal cells. Cytotherapy 2013; 15: 1352 – 1361.
dc.identifier.citedreferenceMeza‐Zepeda LA, Noer A, Dahl JA et al. High‐resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med 2008; 12: 553 – 563.
dc.identifier.citedreferenceDominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 2006; 8: 315 – 317.
dc.identifier.citedreferenceBourin P, Bunnell BA, Casteilla L et al. Stromal cells from the adipose tissue‐derived stromal vascular fraction and culture expanded adipose tissue‐derived stromal/stem cells: A joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy 2013; 15: 641 – 648.
dc.identifier.citedreferenceLysaght T, Campbell AV. Regulating autologous adult stem cells: The FDA steps up. Cell Stem Cell 2011; 9: 393 – 396.
dc.identifier.citedreferenceWestenfelder C, Togel FE. Protective actions of administered mesenchymal stem cells in acute kidney injury: Relevance to clinical trials. Kidney Int Supp 2011; 1: 103 – 106.
dc.identifier.citedreferenceVega A, Martín‐Ferrero MA, Del Canto F et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: A randomized controlled trial. Transplantation 2015; 99: 1681.
dc.identifier.citedreferenceJo CH, Lee YG, Shin WH et al. Intra‐articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof‐of‐concept clinical trial. Stem Cells 2014; 32: 1254 – 1266.
dc.identifier.citedreferenceFu X, Fang L, Li X et al. Enhanced wound‐healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen 2006; 14: 325 – 335.
dc.identifier.citedreferenceProckop DJ. "Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Therapeut 2007; 82: 241 – 243.
dc.identifier.citedreferenceUccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726 – 736.
dc.identifier.citedreferenceMaxson S, Lopez EA, Yoo D et al. Concise review: Role of mesenchymal stem cells in wound repair. Stem Cells Translational Medicine 2012; 1: 142 – 149.
dc.identifier.citedreferenceAlmalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016; 92: 41 – 51.
dc.identifier.citedreferenceGimble J, Guilak F. Adipose‐derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362 – 369.
dc.identifier.citedreferenceGimble J, Katz A, Bunnell B. Adipose‐derived stem cells for regenerative medicine. Circ Res 2007; 100: 1249 – 1260.
dc.identifier.citedreferenceMacrin D, Joseph JP, Pillai AA et al. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev Rep 2017; 13: 741 – 756.
dc.identifier.citedreferenceZuk PA, Zhu M, Mizuno H. Multilineage cells from human adipose tissue: Implications for cell‐based therapies. Tissue Eng 2001; 7: 211 – 228.
dc.identifier.citedreferenceFraser J, Wulur I, Alfonso Z et al. Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24: 150 – 154.
dc.identifier.citedreferenceLee JS, Hong JM, Moon GJ et al. A long‐term follow‐up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010; 28: 1099 – 1106.
dc.identifier.citedreferenceLlufriu S, Sepúlveda M, Blanco Y et al. Randomized placebo‐controlled phase ii trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One 2014; 9: e113936.
dc.identifier.citedreferenceTzouvelekis A, Paspaliaris V, Koliakos G et al. A prospective, non‐randomized, no placebo‐controlled, phase ib clinical trial to study the safety of the adipose derived stromal cells‐stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med 2013; 11: 171.
dc.identifier.citedreferenceWeiss DJ, Casaburi R, Flannery R et al. A placebo‐controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2013; 143: 1590 – 1598.
dc.identifier.citedreferenceHare JM, Traverse JH, Henry TD et al. A randomized, double‐blind, placebo‐controlled, dose‐escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009; 54: 2277 – 2286.
dc.identifier.citedreferenceWollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone‐marrow cell transfer after myocardial infarction: The boost randomised controlled clinical trial. Lancet 2004; 364: 141 – 148.
dc.identifier.citedreferenceKharaziha P, Hellström PM, Noorinayer B et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: A phase i–ii clinical trial. Eur J Gastroenterol Hepatol 2009; 21: 1199 – 1205.
dc.identifier.citedreferenceTerai S, Ishikawa T, Omori K et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006; 24: 2292 – 2298.
dc.identifier.citedreferencePanes J, García‐Olmo D, Van Assche G et al. Expanded allogeneic adipose‐derived mesenchymal stem cells (Cx601) for complex perianal fistulas in crohn’s disease: A phase 3 randomised, double‐blind controlled trial. Lancet 2016; 388: 1281 – 1290.
dc.identifier.citedreferenceNakamizo A, Marini F, Amano T et al. Human bone marrow–derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307 – 3318.
dc.identifier.citedreferenceGutiérrez‐Fernández M, Rodríguez‐Frutos B, Ramos‐Cejudo J et al. Effects of intravenous administration of allogenic bone marrow‐ and adipose tissue‐derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther 2013; 4: 11.
dc.identifier.citedreferenceLiu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose‐derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia‐reperfusion injury. Int J Clin Exp Pathol 2014; 7: 174 – 183.
dc.identifier.citedreferenceJiang W, Liang G, Li X et al. Intracarotid transplantation of autologous adipose‐derived mesenchymal stem cells significantly improves neurological deficits in rats after MCAO. J Mater Sci Mater Med 2014; 25: 1357 – 1366.
dc.identifier.citedreferenceGutiérrez‐Fernández M, Rodríguez‐Frutos B, Ramos‐Cejudo J et al. Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: Proof of concept in rats. J Transl Med 2015; 13: 46.
dc.identifier.citedreferenceOtero‐Ortega L, Gutiérrez‐Fernández M, Ramos‐Cejudo J et al. White matter injury restoration after stem cell administration in subcortical ischemic stroke. Stem Cell Res Ther 2015; 6: 121.
dc.identifier.citedreferenceOh S‐H, Choi C, Chang D‐J et al. Early neuroprotective effect with lack of long‐term cell replacement effect on experimental stroke after intra‐arterial transplantation of adipose‐derived mesenchymal stromal cells. Cytotherapy 2015; 17: 1090 – 1103.
dc.identifier.citedreferenceChen K‐H, Chen C‐H, Wallace CG et al. Intravenous administration of xenogenic adipose‐derived mesenchymal stem cells (ADMSC) and ADMSC‐derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget 2016; 7: 74537 – 74556.
dc.identifier.citedreferenceGrudzenski S, Baier S, Ebert A et al. The effect of adipose tissue‐derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Res Ther 2017; 8: 96.
dc.identifier.citedreferenceHedayatpour A, Ragerdi I, Pasbakhsh P et al. Promotion of remyelination by adipose mesenchymal stem cell transplantation in a cuprizone model of multiple sclerosis. Cell J 2013; 15: 142 – 151.
dc.identifier.citedreferenceYousefi F, Ebtekar M, Soleimani M et al. Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose‐tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2013; 17: 608 – 616.
dc.identifier.citedreferenceSemon JA, Zhang X, Pandey AC et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Translational Medicine 2013; 2: 789 – 796.
dc.identifier.citedreferenceSemon JA, Maness C, Zhang X et al. Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Res Ther 2014; 5: 2.
dc.identifier.citedreferenceZhang X, Bowles AC, Semon JA et al. Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model. PLoS One 2014; 9: e85007.
dc.identifier.citedreferenceBowles AC, Strong AL, Wise RM et al. Adipose stromal vascular fraction‐mediated improvements at late‐stage disease in a murine model of multiple sclerosis. Stem Cells 2017; 35: 532 – 544.
dc.identifier.citedreferenceStrong AL, Bowles AC, Wise RM et al. Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 2016; 34: 614 – 626.
dc.identifier.citedreferenceYousefi F, Ebtekar M, Soudi S et al. In vivo immunomodulatory effects of adipose‐derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol Lett 2016; 172: 94 – 105.
dc.identifier.citedreferenceBeitnes JO, Øie E, Shahdadfar A et al. Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplant 2012; 21: 1697 – 1709.
dc.identifier.citedreferenceFang C‐H, Jin J, Joe J‐H et al. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte‐like cells and cell transplantation effect on myocardial infarction in rats: Comparison with cord blood and adipose tissue‐derived mesenchymal stem cells. Cell Transplant 2012; 21: 1687 – 1696.
dc.identifier.citedreferenceKim SW, Lee DW, Yu LH et al. Mesenchymal stem cells overexpressing gcp‐2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res 2012; 95: 495 – 506.
dc.identifier.citedreferenceLi T‐S, Cheng K, Malliaras K et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere‐derived cells. J Am Coll Cardiol 2012; 59: 942 – 953.
dc.identifier.citedreferencePaul A, Srivastava S, Chen G et al. Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models: Comparison with bone marrow stem cells. Cell Biochem Biophys 2013; 67: 263 – 273.
dc.identifier.citedreferenceRasmussen JG, Frøbert O, Holst‐Hansen C et al. Comparison of human adipose‐derived stem cells and bone marrow‐derived stem cells in a myocardial infarction model. Cell Transplant 2014; 23: 195 – 206.
dc.identifier.citedreferenceShudo Y, Miyagawa S, Ohkura H et al. Addition of mesenchymal stem cells enhances the therapeutic effects of skeletal myoblast cell‐sheet transplantation in a rat ischemic cardiomyopathy model. Tissue Eng Part A 2014; 20: 728 – 739.
dc.identifier.citedreferenceComella K, Parcero J, Bansal H et al. Effects of the intramyocardial implantation of stromal vascular fraction in patients with chronic ischemic cardiomyopathy. J Transl Med 2016; 14: 158.
dc.identifier.citedreferenceAntunes MA, Abreu SC, Cruz FF et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res 2014; 15: 118.
dc.identifier.citedreferenceGhorbani A, Feizpour A, Hashemzahi M et al. The effect of adipose derived stromal cells on oxidative stress level, lung emphysema and white blood cells of guinea pigs model of chronic obstructive pulmonary disease. Daru 2014; 22: 26.
dc.identifier.citedreferenceHong Y, Kim YS, Hong SH et al. Therapeutic effects of adipose‐derived stem cells pretreated with pioglitazone in an emphysema mouse model. Exp Mol Med 2016; 48: e266.
dc.identifier.citedreferenceCho RJ, Kim YS, Kim JY et al. Human adipose‐derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase‐induced emphysema. BMB Rep 2017; 50: 79 – 84.
dc.identifier.citedreferenceTashiro J, Elliot SJ, Gerth DJ et al. Therapeutic benefits of young, but not old, adipose‐derived mesenchymal stem cells in a chronic mouse model of bleomycin‐induced pulmonary fibrosis. Transl Res 2015; 166: 554 – 567.
dc.identifier.citedreferenceTzilas V, Bouros E, Fourla D et al. Prospective phase 1 open clinical trial to study the safety of adipose derived mesenchymal stem cells (ADMSCs) in COPD and combined pulmonary fibrosis and emphysema (CPFE). Eur Respir J 2015; 46: OA1970.
dc.identifier.citedreferenceReddy M, Fonseca L, Gowda S et al. Human adipose‐derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: Comparison with pirfenidone. Int J Stem Cells 2016; 9: 192 – 206.
dc.identifier.citedreferenceWang Y, Lian F, Li J et al. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by ccl4 in rats. J Transl Med 2012; 10: 133.
dc.identifier.citedreferenceSeki A, Sakai Y, Komura T et al. Adipose tissue‐derived stem cells as a regenerative therapy for a mouse steatohepatitis‐induced cirrhosis model. Hepatology 2013; 58: 1133 – 1142.
dc.identifier.citedreferenceOkura H, Soeda M, Morita M et al. Therapeutic potential of human adipose tissue‐derived multi‐lineage progenitor cells in liver fibrosis. Biochem Biophys Res Commun 2015; 456: 860 – 865.
dc.identifier.citedreferenceYu F, Ji S, Su L et al. Adipose‐derived mesenchymal stem cells inhibit activation of hepatic stellate cells in vitro and ameliorate rat liver fibrosis in vivo. J Formos Med Assoc 2015; 114: 130 – 138.
dc.identifier.citedreferenceElShebiney SS, Ahmed HH, Aglan HA. Multi‐targeted therapy of hepatic fibrosis by adipose tissue derived mesenchymal stem cells. Int J Pharm Clin Res 2016; 8: 640 – 648.
dc.identifier.citedreferenceZhang X, Hu MG, Pan K et al. 3d spheroid culture enhances the expression of antifibrotic factors in human adipose‐derived MSCs and improves their therapeutic effects on hepatic fibrosis. Stem Cells Int 2016; 2016: 1.
dc.identifier.citedreferenceGad AM, Hassan WA, Fikry EM. Significant curative functions of the mesenchymal stem cells on methotrexate‐induced kidney and liver injuries in rats. J Biochem Mol Toxicol 2017; 31: e21919.
dc.identifier.citedreferenceSakai Y, Takamura M, Seki A et al. Phase i clinical study of liver regenerative therapy for cirrhosis by intrahepatic arterial infusion of freshly isolated autologous adipose tissue‐derived stromal/stem (regenerative) cell. Regen Ther 2017; 6: 52 – 64.
dc.identifier.citedreferencede la Portilla F, Alba F, García‐Olmo D et al. Expanded allogeneic adipose‐derived stem cells (eascs) for the treatment of complex perianal fistula in crohn’s disease: Results from a multicenter phase i/iia clinical trial. Int J Colorectal Dis 2013; 28: 313 – 323.
dc.identifier.citedreferenceCho YB, Lee WY, Park KJ et al. Autologous adipose tissue‐derived stem cells for the treatment of crohn’s fistula: A phase i clinical study. Cell Transplant 2013; 22: 279 – 285.
dc.identifier.citedreferencePérez‐Merino EM, Usón‐Casaús JM, Zaragoza‐Bayle C et al. Safety and efficacy of allogeneic adipose tissue‐derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Clinical and laboratory outcomes. Vet J 2015; 206: 385 – 390.
dc.identifier.citedreferenceCho YB, Park KJ, Yoon SN et al. Long‐term results of adipose‐derived stem cell therapy for the treatment of crohn’s fistula. Stem Cells Translational Medicine 2015; 4: 532 – 537.
dc.identifier.citedreferencePark KJ, Ryoo S‐B, Kim JS et al. Allogeneic adipose‐derived stem cells for the treatment of perianal fistula in crohn’s disease: A pilot clinical trial. Colorectal Dis 2016; 18: 468 – 476.
dc.identifier.citedreferenceGarcía‐Arranz M, Herreros MD, González‐Gómez C et al. Treatment of crohn’s‐related rectovaginal fistula with allogeneic expanded‐adipose derived stem cells: A phase I‐IIA clinical trial. Stem Cells Translational Medicine 2016; 5: 1441 – 1446.
dc.identifier.citedreferenceCao Y, Ding Z, Han C et al. Efficacy of mesenchymal stromal cells for fistula treatment of crohn’s disease: A systematic review and meta‐analysis. Digest Dis Sci 2017; 62: 851 – 860.
dc.identifier.citedreferenceAltanerova V, Cihova M, Babic M et al. Human adipose tissue‐derived mesenchymal stem cells expressing yeast cytosinedeaminase::Uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int J Cancer 2012; 130: 2455 – 2463.
dc.identifier.citedreferenceChoi SA, Lee JY, Wang K‐C et al. Human adipose tissue‐derived mesenchymal stem cells: Characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer 2012; 48: 129 – 137.
dc.identifier.citedreferenceAltaner C, Altanerova V, Cihova M et al. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int J Cancer 2014; 134: 1458 – 1465.
dc.identifier.citedreferenceLi Q, Wijesekera O, Salas SJ et al. Mesenchymal stem cells from human fat engineered to secrete BMP4 are non‐oncogenic, suppress brain cancer, and prolong survival. Clin Cancer Res 2014; 20: 2375 – 2387.
dc.identifier.citedreferenceMartinez‐Quintanilla J, He D, Wakimoto H et al. Encapsulated stem cells loaded with hyaluronidase‐expressing oncolytic virus for brain tumor therapy. Mol Ther 2015; 23: 108 – 118.
dc.identifier.citedreferenceChoi SA, Lee YE, Kwak PA et al. Clinically applicable human adipose tissue‐derived mesenchymal stem cells delivering therapeutic genes to brainstem gliomas. Cancer Gene Ther 2015; 22: 302 – 311.
dc.identifier.citedreferencede Melo SM, Bittencourt S, Ferrazoli EG et al. The anti‐tumor effects of adipose tissue mesenchymal stem cell transduced with HSV‐Tk gene on U‐87‐driven brain tumor. PLoS One 2015; 10: e0128922.
dc.identifier.citedreferencePacioni S, D’Alessandris QG, Giannetti S et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Res Ther 2017; 8: 53.
dc.identifier.citedreferenceKim JH, Park DJ, Yun JC et al. Human adipose tissue‐derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. Am J Physiol Renal Physiol 2012; 302: F1141 – F1150.
dc.identifier.citedreferenceYasuda K, Ozaki T, Saka Y et al. Autologous cell therapy for cisplatin‐induced acute kidney injury by using non‐expanded adipose tissue‐derived cells. Cytotherapy 2012; 14: 1089 – 1100.
dc.identifier.citedreferenceShih Y‐C, Lee P‐Y, Cheng H et al. Adipose‐derived stem cells exhibit antioxidative and antiapoptotic properties to rescue ischemic acute kidney injury in rats. Plast Reconstruct Surg 2013; 132: 940e – 951e.
dc.identifier.citedreferenceChen Y‐T, Yang C‐C, Zhen Y‐Y et al. Cyclosporine‐assisted adipose‐derived mesenchymal stem cell therapy to mitigate acute kidney ischemia–reperfusion injury. Stem Cell Res Ther 2013; 4: 62.
dc.identifier.citedreferenceYao W, Hu Q, Ma YG et al. Human adipose‐derived mesenchymal stem cells repair cisplatin‐induced acute kidney injury through antiapoptotic pathways. Exp Ther Med 2015; 10: 468 – 476.
dc.identifier.citedreferenceElhusseini FM, Saad MA, Anber N et al. Long term study of protective mechanisms of human adipose derived mesenchymal stem cells on cisplatin induced kidney injury in sprague‐dawley rats. J Stem Cells Regen Med 2016; 12: 36 – 48.
dc.identifier.citedreferenceLin K‐C, Yip H‐K, Shao P‐L et al. Combination of adipose‐derived mesenchymal stem cells (ADMSC) and ADMSC‐derived exosomes for protecting kidney from acute ischemia‐reperfusion injury. Int J Cardiol 2016; 216: 173 – 185.
dc.identifier.citedreferenceAshour RH, Saad M‐A, Sobh M‐A et al. Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin‐induced acute kidney injury in sprague‐dawley rats. Stem Cell Res Ther 2016; 7: 126.
dc.identifier.citedreferenceKoh YG, Choi YJ, Kwon SK et al. Clinical results and second‐look arthroscopic findings after treatment with adipose‐derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2015; 23: 1308 – 1316.
dc.identifier.citedreferenceBui KH‐T, Duong TD, Nguyen NT et al. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet‐rich plasma: A clinical study. Biomed Res Ther 2014; 1: 02.
dc.identifier.citedreferenceGibbs N, Diamond R, Sekyere EO et al. Management of knee osteoarthritis by combined stromal vascular fraction cell therapy, platelet‐rich plasma, and musculoskeletal exercises: A case series. J Pain Res 2015; 8: 799 – 806.
dc.identifier.citedreferenceKoh YG, Kwon OR, Kim YS et al. Adipose‐derived mesenchymal stem cells with microfracture versus microfracture alone: 2‐year follow‐up of a prospective randomized trial. Arthroscopy 2016; 32: 97 – 109.
dc.identifier.citedreferenceNguyen PD, Tran TD‐X, Nguyen HT‐N et al. Comparative clinical observation of arthroscopic microfracture in the presence and absence of a stromal vascular fraction injection for osteoarthritis. Stem Cells Translational Medicine 2017; 6: 187.
dc.identifier.citedreferencePers Y‐M, Rackwitz L, Ferreira R et al. Adipose mesenchymal stromal cell‐based therapy for severe osteoarthritis of the knee: A phase I dose‐escalation trial. Stem Cells Translational Medicine 2016; 5: 847 – 856.
dc.identifier.citedreferenceYokota N, Yamakawa M, Shirata T et al. Clinical results following intra‐articular injection of adipose‐derived stromal vascular fraction cells in patients with osteoarthritis of the knee. Regen Ther 2017; 6: 108 – 112.
dc.identifier.citedreferenceCollawn SS, Banerjee NS, de la Torre J et al. Adipose‐derived stromal cells accelerate wound healing in an organotypic raft culture model. Ann Plastic Surg 2012; 68: 501 – 504.
dc.identifier.citedreferenceFan M, Chen W, Liu W et al. The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation Res 2010; 13: 429 – 438.
dc.identifier.citedreferenceLiu X, Wang Z, Wang R et al. Direct comparison of the potency of human mesenchymal stem cells derived from amnion tissue, bone marrow and adipose tissue at inducing dermal fibroblast responses to cutaneous wounds. Int J Mol Med 2013; 31: 407 – 415.
dc.identifier.citedreferenceNavone S, Pascucci L, Dossena M et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther 2014; 5: 7.
dc.identifier.citedreferenceMendez JJ, Ghaedi M, Sivarapatna A et al. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials 2015; 40: 61 – 71.
dc.identifier.citedreferenceDomingues JA, Cherutti G, Motta AC et al. Bilaminar device of poly(lactic‐co‐glycolic acid)/collagen cultured with adipose‐derived stem cells for dermal regeneration. Artifl Org 2016; 40: 938 – 949.
dc.identifier.citedreferenceHu L, Wang J, Zhou X et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 2016; 6: 32993.
dc.identifier.citedreferenceChae DS, Han S, Son M et al. Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property. Cytotherapy 2017; 19: 543 – 554.
dc.identifier.citedreferenceCamilleri ET, Gustafson MP, Dudakovic A et al. Identification and validation of multiple cell surface markers of clinical‐grade adipose‐derived mesenchymal stromal cells as novel release criteria for good manufacturing practice‐compliant production. Stem Cell Res Ther 2016; 7: 107.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.