Show simple item record

Deformable mapping technique to correlate lesions in digital breast tomosynthesis and automated breast ultrasound images

dc.contributor.authorGreen, Crystal A.
dc.contributor.authorGoodsitt, Mitchell M.
dc.contributor.authorBrock, Kristy K.
dc.contributor.authorDavis, Cynthia L.
dc.contributor.authorLarson, Eric D.
dc.contributor.authorLau, Jasmine H.
dc.contributor.authorCarson, Paul L.
dc.date.accessioned2018-11-20T15:32:30Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationGreen, Crystal A.; Goodsitt, Mitchell M.; Brock, Kristy K.; Davis, Cynthia L.; Larson, Eric D.; Lau, Jasmine H.; Carson, Paul L. (2018). "Deformable mapping technique to correlate lesions in digital breast tomosynthesis and automated breast ultrasound images." Medical Physics 45(10): 4402-4417.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/146324
dc.publisherLippincott Williams & Wilkins
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiomechanical modeling
dc.subject.otherdeformable registration
dc.subject.otherdigital breast tomosynthesis
dc.subject.otherbreast ultrasound
dc.titleDeformable mapping technique to correlate lesions in digital breast tomosynthesis and automated breast ultrasound images
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146324/1/mp13113.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146324/2/mp13113_am.pdf
dc.identifier.doi10.1002/mp.13113
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceUnlu MZ, Krol A, Magri A, et al. Computerized method for nonrigid MR‐to‐PET breast‐image registration. Comput Biol Med. 2010; 40: 37 – 53.
dc.identifier.citedreferenceSolves‐Llorens JA, Rupérez MJ, Monserrat C. A complete software application for automatic registration of x‐ray mammography and magnetic resonance images. Med Phys. 2014; 41: 081903.
dc.identifier.citedreferenceHopp T, Dietzel M, Baltzer PA, et al. Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity‐based optimization. Med Image Anal. 2013; 17: 209 – 218.
dc.identifier.citedreferenceHipwell JH, Vavourakis V, Han L, Mertzanidou T, Eiben B, Hawkes DJ. A review of biomechanically informed breast image registration. Phys Med Biol. 2016; 61: R1 – R31.
dc.identifier.citedreferenceGeorgii J, Zöhrer F, Hahn HK. Model‐based position correlation between breast images. In: Proceedings Volume 8670, Medical Imaging 2013: Computer‐Aided Diagnosis. Vol 8670; 2013:1‐7.
dc.identifier.citedreferenceRuiter NV, Stotzka R, Müller T, Gemmeke H, Reichenbach JR, Kaiser WA. Model‐based registration of X‐ray mammograms and MR images of the female breast. IEEE Trans Nucl Sci. 2006; 53: 204 – 211.
dc.identifier.citedreferenceTelegrafo M, Rella L, Stabile Ianora AA, Angelelli G, Moschetta M. Supine breast US: how to correlate breast lesions from prone MRI. Br J Radiol. 2016; 89: 20150497.
dc.identifier.citedreferenceHopp T, Duric N, Ruiter NV. Computerized medical imaging and graphics image fusion of ultrasound computer tomography volumes with X‐ray mammograms using a biomechanical model based 2D/3D registration. Comput Med Imaging Graph. 2015; 40: 170 – 181.
dc.identifier.citedreferenceNarayanasamy G, LeCarpentier GL, Roubidoux M, Fowlkes JB, Schott AF, Carson PL. Spatial registration of temporally separated whole breast 3D ultrasound images. Med Phys. 2009; 36: 4288.
dc.identifier.citedreferenceKrol A, Unlu MZ, Baum KG, et al. MRI/PET nonrigid breast‐image registration using skin fiducial markers. Phys Med. 2006; 21: 39 – 43.
dc.identifier.citedreferenceKucukkaya F, Aribal E, Tureli D, Altas H, Kaya H. Use of a volume navigation technique for combining real‐time ultrasound and contrast‐enhanced MRI: accuracy and feasibility of a novel technique for locating breast lesions fikret kucukkaya1. Am J Roentgenol. 2016; 206: 217 – 225.
dc.identifier.citedreferenceHungr N, Long JA, Beix V, Troccaz J. A realistic deformable prostate phantom for multimodal imaging and needle‐insertion procedures. Med Phys. 2012; 39: 2031 – 2041.
dc.identifier.citedreferenceNegron LA, Viola F, Black EP, Toth CA, Walker WF. Development and characterization of a radiation force imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2002; 49: 1543 – 1551.
dc.identifier.citedreferenceHoward S, Yuen J, Wegner P, Zanelli CI. Characterization and FEA simulation for a HIFU phantom material. IEEE Symp Ultrason 2003. 2003;2(c):1270‐1273.
dc.identifier.citedreferenceAdam Cunha J, Hsu IC, Pouliot J, et al. Toward adaptive stereotactic robotic brachytherapy for prostate cancer: demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot. Minim Invasive Ther Allied Technol. 2010; 19: 189 – 202.
dc.identifier.citedreferenceCloutier G, Soulez G, Qanadli SD, et al. A multimodality vascular imaging phantom with fiducial markers visible in DSA, CTA, MRA, and ultrasound. Med Phys. 2004; 31: 1424 – 1433.
dc.identifier.citedreferenceMundinger A. 3D supine automated ultrasound (SAUS, ABUS, ABVS) for supplemental screening women with dense breasts. J Breast Heal. 2016; 12: 52 – 55.
dc.identifier.citedreferenceStavros AT, Rapp CL, Parker SH. Breast Ultrasound. Philadelphia, PA: Lippincott Williams & Wilkins; 2004.
dc.identifier.citedreferenceFedorov A, Beichel R, Kalpathy‐cramer J, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012; 30: 1323 – 1341.
dc.identifier.citedreferenceDice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26: 297 – 302.
dc.identifier.citedreferenceBrock KK, Sharpe MB, Dawson LA, Kim SM, Jaffray DA. Accuracy of finite element model‐based multi‐organ deformable image registration. Med Phys. 2005; 32: 1647 – 1659.
dc.identifier.citedreferenceBoverman G, Davis CEL, Geimer SD, Meaney PM. Image Registration for Microwave Tomography of the Breast Using Priors from Non‐Simultaneous Previous Magnetic Resonance Images. In: 2017 First IEEE MTT‐S International Microwave Bio Conference (IMBIOC). Vol 7249. IEEE; 2017:1‐4.
dc.identifier.citedreferenceGu P, Lee W‐M, Roubidoux MA, Yuan J, Wang X, Carson PL. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics. 2016; 65: 51 – 58.
dc.identifier.citedreferenceKelly KM, Richwald GA. Automated whole‐breast ultrasound: advancing the performance of breast cancer screening. Semin Ultrasound CT MRI. 2011; 32: 273 – 280.
dc.identifier.citedreferenceJackson V. The role of US in breast imaging. Radiology. 1990; 177: 305 – 311.
dc.identifier.citedreferenceTaylor KJW, Merritt C, Piccoli C, et al. Breast examination to characterize breast masses. Ultrasound Med Biol. 2002; 28: 19 – 26.
dc.identifier.citedreferenceOhuchi N, Suzuki A, Sobue T, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti‐cancer Randomized Trial (J‐START): a randomised controlled trial. Lancet. 2016; 387: 341 – 348.
dc.identifier.citedreferenceWilczek B, Wilczek HE, Rasouliyan L, Leifland K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: report from a hospital‐based, high‐volume, single‐center breast cancer screening program. Eur J Radiol. 2016; 85: 1554 – 1563.
dc.identifier.citedreferenceGiger ML, Inciardi MF, Edwards A, et al. Automated breast ultrasound in breast cancer screening of women with dense breasts: reader study of mammography‐negative and mammography‐positive cancers. Am J Roentgenol. 2016; 206: 1341 – 1350.
dc.identifier.citedreferenceBrem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three‐dimensional automated breast us in women with dense breast tissue: the somoinsight study. Radiology. 2015; 274: 663 – 673.
dc.identifier.citedreferenceHakim CM, Chough DM, Ganott MA, et al. Digital breast tomosynthesis in the diagnostic environment: a subjective side‐by‐side review. Am J Roentgenol. 2010; 195: W172 – W176.
dc.identifier.citedreferenceKim SA, Chang JM, Cho N, Yi A, Moon WK. Characterization of breast lesions: comparison of digital breast tomosynthesis and ultrasonography. Korean J Radiol. 2015; 6: 229 – 238.
dc.identifier.citedreferenceConway WF, Hayes CW, Brewer WH. Occult breast masses: use of a mammographic localizing grid for US evaluation. Radiology. 1991; 181: 143 – 146.
dc.identifier.citedreferenceSinha SP, Goodsitt MM, Roubidoux MA, et al. Automated ultrasound scanning on a dual‐modality breast imaging system: coverage and motion issues and solutions. J Ultrasound Med. 2007; 26: 645 – 655.
dc.identifier.citedreferenceSinha SP, Roubidoux MA, Helvie MA, et al. Multi‐modality 3d breast imaging with X‐ray tomosynthesis and automated ultrasound. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS; 2007:1335–1338.
dc.identifier.citedreferenceGoodsitt MM, Chan HP, Hadjiiski L, LeCarpentier GL, Carson PL. Automated registration of volumes of interest for a combined X‐ray tomosynthesis and ultrasound breast imaging system. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics); 2008, vol. 5116 LNCS:463‐468.
dc.identifier.citedreferenceKapur A, Carson PL, Eberhard J, et al. Combination of digital mammography with semi‐automated 3D breast ultrasound. Technol Cancer Res Treat. 2004; 3: 325 – 334.
dc.identifier.citedreferencePadilla F, Roubidoux MA, Paramagul C, et al. Breast mass characterization using 3‐dimensional automated ultrasound as an adjunct to digital breast. Am Inst Ultrasound Med. 2013; 32: 93 – 104.
dc.identifier.citedreferenceLecarpentier GL, Goodsitt MM, Verweij S, Li J, Padilla F, Carson PL. Acoustic performance of mesh compression paddles for a multimodality breast imaging system. Ultrasound Med Biol. 2014; 40: 1503 – 1511.
dc.identifier.citedreferenceLi J, Goodsitt MM, Padilla F, et al. Effect of a gel retainment dam on automated ultrasound coverage in a dual‐modality breast imaging ultrasound system. J Ultrasound Med. 2010; 29: 1075 – 1081.
dc.identifier.citedreferenceVaughan CL, Douglas TS, Said‐Hartley Q, et al. Testing a dual‐modality system that combines full‐field digital mammography and automated breast ultrasound. Clin Imaging. 2016; 40: 498 – 505.
dc.identifier.citedreferenceSchulz‐Wendtland R, Jud SM, Fasching PA, et al. A standard mammography unit – standard 3D ultrasound probe fusion prototype: first results. Geburtshilfe Frauenheilkd. 2017; 77: 679 – 685.
dc.identifier.citedreferenceLarson ED, Lee W‐M, Roubidoux MA, et al. Automated breast ultrasound: dual‐sided compared with single‐sided imaging. Ultrasound Med Biol. 2016; 42: 2072 – 2082.
dc.identifier.citedreferenceSamani A, Bishop J, Yaffe MJ, Plewes DB. Biomechanical 3‐D finite element modeling of the human breast using MRI data. IEEE Trans Med Imaging. 2001; 20: 271 – 279.
dc.identifier.citedreferenceHan L, Hipwell JH, Tanner C, et al. Development of patient‐specific biomechanical models. Phys Med Biol. 2012; 57: 455 – 472.
dc.identifier.citedreferenceTanner C, Guarino S, Hall‐craggs MA, Hawkes DJ. Large breast compressions: observations and evaluation of simulations. Med Phys. 2011; 38: 682 – 690.
dc.identifier.citedreferenceMertzanidou T, Hipwell J, Johnsen S, et al. MRI to X‐ray mammography intensity‐based registration with simultaneous optimisation of pose and biomechanical transformation parameters. Med Image Anal. 2014; 18: 674 – 683.
dc.identifier.citedreferenceLee AWC, Rajagopal V, Babarenda Gamage TP, Doyle AJ, Nielsen PMF, Nash MP. Breast lesion co‐localisation between X‐ray and MR images using finite element modelling. Med Image Anal. 2013; 17: 1256 – 1264.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.