Show simple item record

Temporal coupling of field potentials and action potentials in the neocortex

dc.contributor.authorWatson, Brendon O.
dc.contributor.authorDing, Mingxin
dc.contributor.authorBuzsáki, György
dc.date.accessioned2018-11-20T15:32:33Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationWatson, Brendon O.; Ding, Mingxin; Buzsáki, György (2018). "Temporal coupling of field potentials and action potentials in the neocortex." European Journal of Neuroscience 48(7): 2482-2497.
dc.identifier.issn0953-816X
dc.identifier.issn1460-9568
dc.identifier.urihttps://hdl.handle.net/2027.42/146325
dc.description.abstractThe local field potential (LFP) is an aggregate measure of group neuronal activity and is often correlated with the action potentials of single neurons. In recent years, investigators have found that action potential firing rates increase during elevations in power high‐frequency band oscillations (50–200 Hz range). However, action potentials also contribute to the LFP signal itself, making the spike–LFP relationship complex. Here, we examine the relationship between spike rates and LFP in varying frequency bands in rat neocortical recordings. We find that 50–180 Hz oscillations correlate most consistently with high firing rates, but that other LFP bands also carry information relating to spiking, including in some cases anti‐correlations. Relatedly, we find that spiking itself and electromyographic activity contribute to LFP power in these bands. The relationship between spike rates and LFP power varies between brain states and between individual cells. Finally, we create an improved oscillation‐based predictor of action potential activity by specifically utilizing information from across the entire recorded frequency spectrum of LFP. The findings illustrate both caveats and improvements to be taken into account in attempts to infer spiking activity from LFP.We examined the relationship between spike rates and local field potentials (LFP) in the rat neocortex, and we find that while 50–180 Hz oscillatory power correlates most consistently with firing rates of neurons, other LFP bands also carry spiking‐related information. We additionally find that spiking itself and electromyographic activity contribute to LFP power and that the ratio of excitatory to inhibitory activity also correlates with 50–180 Hz power. Finally, we create an improved oscillation‐based predictor of action potential activity by utilizing information from the entire LFP frequency spectrum at once.
dc.publisherWiley‐Liss
dc.subject.otherlocal field potential
dc.subject.othercortex
dc.subject.otheraction potential
dc.titleTemporal coupling of field potentials and action potentials in the neocortex
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/1/ejn13807-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/2/ejn13807-sup-0007-FigS7.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/3/ejn13807-sup-0002-FigS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/4/ejn13807-sup-0003-FigS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/5/ejn13807-sup-0005-FigS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/6/ejn13807_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/7/ejn13807-sup-0009-reviewerComments.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/8/ejn13807-sup-0006-FigS6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/9/ejn13807-sup-0008-FigS8.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/10/ejn13807.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146325/11/ejn13807-sup-0004-FigS4.pdf
dc.identifier.doi10.1111/ejn.13807
dc.identifier.sourceEuropean Journal of Neuroscience
dc.identifier.citedreferenceRossant, C., Kadir, S.N., Goodman, D.F.M., Schulman, J., Hunter, M.L.D., Saleem, A.B., Grosmark, A., Belluscio, M. et al. ( 2016 ) Spike sorting for large, dense electrode arrays. Nat. Neurosci., 19, 634 – 641.
dc.identifier.citedreferenceSchomburg, E.W.W., Fernández‐Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou, C.A.A., Koch, C. & Buzsáki, G. ( 2014 ) Theta phase segregation of input‐specific gamma patterns in entorhinal‐hippocampal networks. Neuron, 84, 470 – 485.
dc.identifier.citedreferenceSirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M. & Buzsáki, G. ( 2008 ) Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron, 60, 683 – 697.
dc.identifier.citedreferenceSoltesz, I. & Deschênes, M. ( 1993 ) Low‐ and high‐frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine‐xylazine anesthesia. J. Neurophysiol., 70, 97 – 116.
dc.identifier.citedreferenceStark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H.G. & Buzsáki, G. ( 2013 ) Inhibition‐induced theta resonance in cortical circuits. Neuron, 80, 1263 – 1276.
dc.identifier.citedreferenceStujenske, J.M., Likhtik, E., Topiwala, M.A. & Gordon, J.A. ( 2014 ) Fear and safety engage competing patterns of theta‐gamma coupling in the basolateral amygdala. Neuron, 83, 919 – 933.
dc.identifier.citedreferenceTort, A.B.L., Komorowski, R., Eichenbaum, H. & Kopell, N. ( 2010 ) Measuring phase‐amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol., 104, 1195 – 1210.
dc.identifier.citedreferenceVaidya, S.P. & Johnston, D. ( 2013 ) Temporal synchrony and gamma‐to‐theta power conversion in the dendrites of CA1 pyramidal neurons. Nat. Neurosci., 16, 1812 – 1820.
dc.identifier.citedreferenceVanderwolf, C.H. ( 1969 ) Hippocampal electrical activity and voluntary movement in the rat. Electroen. Clin. Neuro., 26, 407 – 418.
dc.identifier.citedreferenceVarela, F., Lachaux, J., Rodriguez, E. & Martinerie, J. ( 2001 ) The brainweb: phase synchronization and large‐scale integration. Nat. Rev. Neurosci., 2, 229 – 239.
dc.identifier.citedreferenceVicente, R., Gollo, L.L., Mirasso, C.R., Fischer, I. & Pipa, G. ( 2008 ) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. USA, 105, 17157 – 17162.
dc.identifier.citedreferenceVoytek, B. & Knight, R.T. ( 2015 ) Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol. Psychiat., 77, 1089 – 1097.
dc.identifier.citedreferenceVyazovskiy, V.V. & Harris, K.D. ( 2013 ) Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat. Rev. Neurosci., 14, 443 – 451.
dc.identifier.citedreferenceWatson, B.O., Levenstein, D., Greene, J.P., Gelinas, J.N. & Buzsáki, G. ( 2016 ) Network homeostasis and state dynamics of neocortical sleep. Neuron, 90, 839 – 852.
dc.identifier.citedreferenceWeiss, S.A., Banks, G.P., McKhann, G.M., Goodman, R.R., Emerson, R.G., Trevelyan, A.J. & Schevon, C.A. ( 2013 ) Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain, 136, 3796 – 3808.
dc.identifier.citedreferenceWhitham, E.M., Pope, K.J., Fitzgibbon, S.P., Lewis, T., Clark, C.R., Loveless, S., Broberg, M., Wallace, A. et al. ( 2007 ) Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin. Neurophysiol., 118, 1877 – 1888.
dc.identifier.citedreferenceWhittingstall, K. & Logothetis, N.K. ( 2009 ) Frequency‐band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron, 64, 281 – 289.
dc.identifier.citedreferenceYamamoto, J., Suh, J., Takeuchi, D. & Tonegawa, S. ( 2014 ) Successful execution of working memory linked to synchronized high‐frequency gamma oscillations. Cell, 157, 845 – 857.
dc.identifier.citedreferenceZanos, T.P.T., Mineault, P.P.J. & Pack, C.C. ( 2011 ) Removal of spurious correlations between spikes and local field potentials. J. Neurophysiol., 105, 474 – 486.
dc.identifier.citedreferenceZanos, S., Zanos, T.P., Marmarelis, V.Z., Ojemann, G.A. & Fetz, E.E. ( 2012 ) Relationships between spike‐free local field potentials and spike timing in human temporal cortex. J. Neurophysiol., 107, 1808 – 1821.
dc.identifier.citedreferenceAhmed, O.J. & Mehta, M.R. ( 2012 ) Running speed alters the frequency of hippocampal gamma oscillations. J. Neurosci., 32, 7373 – 7383.
dc.identifier.citedreferenceAtallah, B.V. & Scanziani, M. ( 2009 ) Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, 62, 566 – 577.
dc.identifier.citedreferenceBastos, A.M., Vezoli, J. & Fries, P. ( 2015 ) Communication through coherence with inter‐areal delays. Curr. Opin. Neurobiol., 31, 173 – 180.
dc.identifier.citedreferenceBelluscio, M.A., Mizuseki, K., Schmidt, R., Kempter, R. & Buzsáki, G. ( 2012 ) Cross‐frequency phase‐phase coupling between θ and γ oscillations in the hippocampus. J. Neurosci., 32, 423 – 435.
dc.identifier.citedreferenceBerényi, A., Somogyvári, Z., Nagy, A.J., Roux, L., Long, J.D., Fujisawa, S., Stark, E., Leonardo, A. et al. ( 2014 ) Large‐scale, high‐density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol., 111, 1132 – 1149.
dc.identifier.citedreferenceBörgers, C. & Kopell, N. ( 2003 ) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput., 15, 509 – 538.
dc.identifier.citedreferenceBörgers, C., Epstein, S. & Kopell, N.J. ( 2008 ) Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proc. Natl. Acad. Sci. USA, 105, 18023 – 18028.
dc.identifier.citedreferenceBragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K. & Buzsáki, G. ( 1995 ) Gamma (40‐100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci., 15, 47 – 60.
dc.identifier.citedreferenceButler, R., Bernier, P.‐M., Lefebvre, J., Gilbert, G. & Whittingstall, K. ( 2017 ) Decorrelated input dissociates narrow band γ power and BOLD in human visual cortex. J. Neurosci., 37, 5408 – 5418.
dc.identifier.citedreferenceBuzsáki, G. ( 2010 ) Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68, 362 – 385.
dc.identifier.citedreferenceBuzsáki, G. & Chrobak, J.J. ( 1995 ) Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol., 5, 504 – 510.
dc.identifier.citedreferenceBuzsáki, G. & Mizuseki, K. ( 2014 ) The log‐dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci., 15, 264 – 278.
dc.identifier.citedreferenceBuzsáki, G. & Moser, E.I. ( 2013 ) Memory, navigation and theta rhythm in the hippocampal‐entorhinal system. Nat. Neurosci., 16, 130 – 138.
dc.identifier.citedreferenceBuzsáki, G. & Schomburg, E.W. ( 2015 ) What does gamma coherence tell us about inter‐regional neural communication? Nat. Neurosci., 18, 484 – 489.
dc.identifier.citedreferenceBuzsáki, G. & Wang, X.‐J. ( 2012 ) Mechanisms of gamma oscillations. Annu. Rev. Neurosci., 35, 203 – 225.
dc.identifier.citedreferenceBuzsáki, G., Lai‐Wo, S.L. & Vanderwolf, C.H. ( 1983 ) Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev., 6, 139 – 171.
dc.identifier.citedreferenceBuzsáki, G., Anastassiou, C.A. & Koch, C. ( 2012 ) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci., 13, 407 – 420.
dc.identifier.citedreferenceCanolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Berger, M.S., Barbaro, N.M. et al. ( 2006 ) High gamma power is phase‐locked to theta oscillations in human neocortex. Science, 313, 1626 – 1628.
dc.identifier.citedreferenceCardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.‐H. & Moore, C.I. ( 2009 ) Driving fast‐spiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663 – 667.
dc.identifier.citedreferenceColgin, L.L. ( 2016 ) Rhythms of the hippocampal network. Nat. Rev. Neurosci., 17, 239 – 249.
dc.identifier.citedreferenceColgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M.‐B. & Moser, E.I. ( 2009 ) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462, 353 – 357.
dc.identifier.citedreferenceCrone, N.E., Sinai, A. & Korzeniewska, A. ( 2006 ) High‐frequency gamma oscillations and human brain mapping with electrocorticography. Prog. Brain Res., 159, 275 – 295.
dc.identifier.citedreferenceCsicsvari, J., Hirase, H., Czurkó, A., Mamiya, A. & Buzsáki, G. ( 1999 ) Fast network oscillations in the hippocampal CA1 region of the behaving rat. J. Neurosci., 19, RC20.
dc.identifier.citedreferenceCsicsvari, J., Jamieson, B., Wise, K.D. & Buzsáki, G. ( 2003 ) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron, 37, 311 – 322.
dc.identifier.citedreferenceEinevoll, G.T., Kayser, C., Logothetis, N.K. & Panzeri, S. ( 2013 ) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci., 14, 770 – 785.
dc.identifier.citedreferenceEngel, A.K., Fries, P. & Singer, W. ( 2001 ) Dynamic predictions: oscillations and synchrony in top‐down processing. Nat. Rev. Neurosci., 2, 704 – 716.
dc.identifier.citedreferenceFernandez, F.R., Mehaffey, W.H. & Turner, R.W. ( 2005 ) Dendritic Na + current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential. J. Neurophysiol., 94, 3836 – 3848.
dc.identifier.citedreferenceFernandez‐Ruiz, A., Makarov, V.A., Benito, N. & Herreras, O. ( 2012 ) Schaffer‐specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units. J. Neurosci., 32, 5165 – 5176.
dc.identifier.citedreferenceFernandez‐Ruiz, A., Oliva, A., Nagy, G.A., Maurer, A.P., Berényi, A. & Buzsáki, G. ( 2017 ) Entorhinal‐CA3 dual‐input control of spike timing in the hippocampus by theta‐gamma coupling. Neuron, 93, 1213 – 1226.e5.
dc.identifier.citedreferenceFries, P. ( 2005 ) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci., 9, 474 – 480.
dc.identifier.citedreferenceFriston, K., Moran, R. & Seth, A.K. ( 2013 ) Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol., 23, 172 – 178.
dc.identifier.citedreferenceGaona, C.M., Sharma, M., Freudenburg, Z.V., Breshears, J.D., Bundy, D.T., Roland, J., Barbour, D.L., Schalk, G. et al. ( 2011 ) Nonuniform high‐gamma (60‐500 Hz) power changes dissociate cognitive task and anatomy in human cortex. J. Neurosci., 31, 2091 – 2100.
dc.identifier.citedreferenceGray, C.M. & Singer, W. ( 1989 ) Stimulus‐specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 86, 1698 – 1702.
dc.identifier.citedreferenceGrosmark, A.D. & Buzsaki, G. ( 2016 ) Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science, 351, 1440 – 1443.
dc.identifier.citedreferenceHaider, B., Schulz, D.P.A., Häusser, M. & Carandini, M. ( 2016 ) Millisecond coupling of local field potentials to synaptic currents in the awake visual cortex. Neuron, 90, 35 – 42.
dc.identifier.citedreferenceHazan, L., Zugaro, M. & Buzsáki, G. ( 2006 ) Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Meth., 155, 207 – 216.
dc.identifier.citedreferenceHenze, D.A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K.D. & Buzsáki, G. ( 2000 ) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol., 84, 390 – 400.
dc.identifier.citedreferenceIsaacson, J.S. & Scanziani, M. ( 2011 ) How inhibition shapes cortical activity. Neuron, 72, 231 – 243.
dc.identifier.citedreferenceJacobs, J. & Kahana, M.J. ( 2009 ) Neural representations of individual stimuli in humans revealed by gamma‐band electrocorticographic activity. J. Neurosci., 29, 10203 – 10214.
dc.identifier.citedreferenceJarvis, M.R. & Mitra, P.P. ( 2001 ) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput., 13, 717 – 749.
dc.identifier.citedreferenceJohnson, E.L. & Knight, R.T. ( 2015 ) Intracranial recordings and human memory. Curr. Opin. Neurobiol., 31, 18 – 25.
dc.identifier.citedreferenceKahana, M.J., Seelig, D. & Madsen, J.R. ( 2001 ) Theta returns. Curr. Opin. Neurobiol., 11, 739 – 744.
dc.identifier.citedreferenceKayser, C., Petkov, C.I. & Logothetis, N.K. ( 2007 ) Tuning to sound frequency in auditory field potentials. J. Neurophysiol., 98, 1806 – 1809.
dc.identifier.citedreferenceKing, C., Henze, D.A., Leinekugel, X. & Buzsáki, G. ( 1999 ) Hebbian modification of a hippocampal population pattern in the rat. J. Physiol., 521 ( Pt 1 ), 159 – 167.
dc.identifier.citedreferenceLachaux, J.‐P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N.E. ( 2012 ) High‐frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog. Neurobiol., 98, 279 – 301.
dc.identifier.citedreferenceLasztóczi, B. & Klausberger, T. ( 2017 ). Distinct gamma oscillations in the distal dendritic fields of the dentate gyrus and the CA1 area of mouse hippocampus. Brain Struct. Funct., 222, 3355 – 3365
dc.identifier.citedreferenceLindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M. & Einevoll, G.T. ( 2011 ) Modeling the spatial reach of the LFP. Neuron, 72, 859 – 872.
dc.identifier.citedreferenceLisman, J.E. & Jensen, O. ( 2013 ) The theta‐gamma neural code. Neuron, 77, 1002 – 1016.
dc.identifier.citedreferenceLogothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. ( 2001 ) Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150 – 157.
dc.identifier.citedreferenceMagri, C., Schridde, U., Murayama, Y., Panzeri, S. & Logothetis, N.K. ( 2012 ) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J. Neurosci., 32, 1395 – 1407.
dc.identifier.citedreferenceManning, J.R., Jacobs, J., Fried, I. & Kahana, M.J. ( 2009 ) Broadband shifts in local field potential power spectra are correlated with single‐neuron spiking in humans. J. Neurosci., 29, 13613 – 13620.
dc.identifier.citedreferenceMcAfee, S.S., Liu, Y., Dhamala, M. & Heck, D.H. ( 2017 ) Thalamocortical transmission of visual information in awake mice involves phase synchronization and spike synchrony at high gamma frequencies. bioRxiv. https://www.biorxiv.org/content/early/2017/07/30/170167. [Epub ahead of print].
dc.identifier.citedreferenceMiller, K.J., Honey, C.J., Hermes, D., Rao, R.P.N., denNijs, M. & Ojemann, J.G. ( 2014 ) Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. NeuroImage, 85, 711 – 720.
dc.identifier.citedreferenceMiller, K.J., Schalk, G., Hermes, D., Ojemann, J.G. & Rao, R.P.N. ( 2016 ) Spontaneous decoding of the timing and content of human object perception from cortical surface recordings reveals complementary information in the event‐related potential and broadband spectral change. PLoS Comput. Biol., 12, e1004660.
dc.identifier.citedreferenceMizuseki, K., Sirota, A., Pastalkova, E. & Buzsáki, G. ( 2009 ) Theta oscillations provide temporal windows for local circuit computation in the entorhinal‐hippocampal loop. Neuron, 64, 267 – 280.
dc.identifier.citedreferenceMoca, V.V., Ţincaş, I., Melloni, L. & Mureşan, R.C. ( 2011 ) Visual exploration and object recognition by lattice deformation. PLoS One, 6, e22831.
dc.identifier.citedreferenceMochol, G., Hermoso‐Mendizabal, A., Sakata, S., Harris, K.D. & de la Rocha, J. ( 2015 ) Stochastic transitions into silence cause noise correlations in cortical circuits. Proc. Natl. Acad. Sci. USA, 112, 3529 – 3534.
dc.identifier.citedreferenceMukamel, R. ( 2005 ) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science, 309, 951 – 954.
dc.identifier.citedreferenceMureşan, R.C., Jurjuţ, O.F., Moca, V.V., Singer, W. & Nikolić, D. ( 2008 ) The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. J. Neurophysiol., 99, 1333 – 1353.
dc.identifier.citedreferenceNadasdy, Z., Csicsvari, J., Penttonen, M. & Buzsaki, G. ( 1998 ). Extracellular recording and analysis of electrical activity: from single cells to ensembles. In Eichenbaum, H. & Davis, J.L. (Eds), Neuronal Ensembles: Strategies for Recording and Decoding. Wiley‐Liss, New York, pp. 17 – 55.
dc.identifier.citedreferenceNir, Y., Fisch, L., Mukamel, R., Gelbard‐Sagiv, H., Arieli, A., Fried, I. & Malach, R. ( 2007 ) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol., 17, 1275 – 1285.
dc.identifier.citedreferenceNir, Y., Mukamel, R., Dinstein, I., Privman, E., Harel, M., Fisch, L., Gelbard‐Sagiv, H., Kipervasser, S. et al. ( 2008 ) Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat. Neurosci., 11, 1100 – 1108.
dc.identifier.citedreferencePenttonen, M., Kamondi, A., Acsády, L. & Buzsáki, G. ( 1998 ) Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur. J. Neurosci., 10, 718 – 728.
dc.identifier.citedreferencePereda, E., Quiroga, R.Q. & Bhattacharya, J. ( 2005 ) Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol., 77, 1 – 37.
dc.identifier.citedreferenceRay, S. & Maunsell, J.H.R. ( 2010 ) Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron, 67, 885 – 896.
dc.identifier.citedreferenceRay, S. & Maunsell, J.H.R. ( 2011 ) Different origins of gamma rhythm and high‐gamma activity in macaque visual cortex. PLoS Biol., 9, e1000610.
dc.identifier.citedreferenceRay, S., Crone, N.E., Niebur, E., Franaszczuk, P.J. & Hsiao, S.S. ( 2008 ) Neural correlates of high‐gamma oscillations (60‐200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci., 28, 11526 – 11536.
dc.identifier.citedreferenceRenart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A. & Harris, K.D. ( 2010 ) The asynchronous state in cortical circuits. Science, 327, 587 – 590.
dc.identifier.citedreferenceSaleem, A.B., Lien, A.D., Krumin, M., Haider, B., Rosón, M.R., Ayaz, A., Reinhold, K., Busse, L. et al. ( 2017 ) Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron, 93, 315 – 322.
dc.identifier.citedreferenceScheffer‐Teixeira, R., Belchior, H., Leão, R.N., Ribeiro, S. & Tort, A.B.L. ( 2013 ) On high‐frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity. J. Neurosci., 33, 1535 – 1539.
dc.identifier.citedreferenceSchomburg, E.W., Anastassiou, C.A., Buzsaki, G. & Koch, C. ( 2012 ) The spiking component of oscillatory extracellular potentials in the rat hippocampus. J. Neurosci., 32, 11798 – 11811.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.