Show simple item record

Biodiversity improves the ecological design of sustainable biofuel systems

dc.contributor.authorGodwin, Casey M.
dc.contributor.authorLashaway, Aubrey R.
dc.contributor.authorHietala, David C.
dc.contributor.authorSavage, Phillip E.
dc.contributor.authorCardinale, Bradley J.
dc.date.accessioned2018-11-20T15:32:53Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationGodwin, Casey M.; Lashaway, Aubrey R.; Hietala, David C.; Savage, Phillip E.; Cardinale, Bradley J. (2018). "Biodiversity improves the ecological design of sustainable biofuel systems." GCB Bioenergy 10(10): 752-765.
dc.identifier.issn1757-1693
dc.identifier.issn1757-1707
dc.identifier.urihttps://hdl.handle.net/2027.42/146341
dc.description.abstractFor algal biofuels to become a commercially viable and sustainable means of decreasing greenhouse gas emissions, growers are going to need to design feedstocks that achieve at least three characteristics simultaneously as follows: attain high yields; produce high quality biomass; and remain stable through time. These three qualities have proven difficult to achieve simultaneously under the ideal conditions of the laboratory, much less under field conditions (e.g., outdoor culture ponds) where feedstocks are exposed to highly variable conditions and the crop is vulnerable to invasive species, disease, and grazers. Here, we show that principles from ecology can be used to improve the design of feedstocks and to optimize their potential for “multifunctionality.” We performed a replicated experiment to test these predictions under outdoor conditions. Using 80 ponds of 1,100 L each, we tested the hypotheses that polycultures would outperform monocultures in terms of the following functions: biomass production, yield of biocrude from biomass, temporal stability, resisting population crashes, and resisting invasions by unwanted species. Overall, species richness improved stability, biocrude yield, and resistance to invasion. While this suggests that polycultures could outperform monocultures on average, invasion resistance was the only function where polycultures outperformed the best single species in the experiment. Due to tradeoffs among different functions that we measured, no species or polyculture was able to maximize all functions simultaneously. However, diversity did enhance the potential for multifunctionality—the most diverse polyculture performed more functions at higher levels than could any of the monocultures. These results are a key finding for ecological design of sustainable biofuel systems because they show that while a monoculture may be the optimal choice for maximizing short‐term biomass production, polycultures can offer a more stable crop of the desired species over longer periods of time.We tested the hypothesis that multi‐species polycultures of algae can be designed to improve performance in biofuel cultivation and outperform the best single species. Our experiment of 80 open ponds (1,100 L each) showed that polycultures can simultaneously improve crop stability, bio‐crude yield, and resistance to invasive algae ‐ three characteristics that have been difficult to attain under field conditions yet are essential for biofuels to become part of the renewable energy portfolio.
dc.publisherNational Renewable Energy Laboratory (NREL)
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiodiversity
dc.subject.otheralgal biofuels
dc.subject.otherecological design
dc.subject.otherhydrothermal liquefaction
dc.subject.othermultifunctionality
dc.titleBiodiversity improves the ecological design of sustainable biofuel systems
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEnvironmental Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146341/1/gcbb12524_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146341/2/gcbb12524-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146341/3/gcbb12524.pdf
dc.identifier.doi10.1111/gcbb.12524
dc.identifier.sourceGCB Bioenergy
dc.identifier.citedreferenceR Core Team ( 2015 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org.
dc.identifier.citedreferenceMitchell, C. E., Tilman, D., & Groth, J. V. ( 2002 ). Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology, 83 ( 6 ), 1713 – 1726.
dc.identifier.citedreferenceNalley, J. O., Stockenreiter, M., & Litchman, E. ( 2014 ). Community ecology of algal biofuels: Complementarity and trait‐based approaches. Industrial Biotechnology, 10 ( 3 ), 191 – 201. https://doi.org/10.1089/ind.2013.0038
dc.identifier.citedreferenceNarwani, A., Lashaway, A. R., Hietala, D. C., Savage, P. E., & Cardinale, B. J. ( 2016 ). Power of plankton: Effects of algal biodiversity on biocrude production and stability. Environmental Science & Technology, 50 ( 23 ), 13142 – 13150. https://doi.org/10.1021/acs.est.6b03256
dc.identifier.citedreferenceNational Research Council, Committee on the Sustainable Development of Algal Biofuels. ( 2012 ). Sustainable development of algal biofuels in the United States. Washington, DC: The National Academies Press.
dc.identifier.citedreferenceNewby, D. T., Mathews, T. J., Pate, R. C., Huesemann, M. H., Lane, T. W., Wahlen, B. D., … Shurin, J. B. ( 2016 ). Assessing the potential of polyculture to accelerate algal biofuel production. Algal Research, 19, 264 – 277. https://doi.org/10.1016/j.algal.2016.09.004
dc.identifier.citedreferenceOrfield, N. D., Fang, A. J., Valdez, P. J., Nelson, M. C., Savage, P. E., Lin, X. N., & Keoleian, G. A. ( 2014 ). Life cycle design of an algal biorefinery featuring hydrothermal liquefaction: Effect of reaction conditions and an alternative pathway including microbial regrowth. ACS Sustainable Chemistry & Engineering, 2 ( 4 ), 867 – 874. https://doi.org/10.1021/sc4004983
dc.identifier.citedreferenceQuinn, J. C., & Davis, R. ( 2015 ). The potentials and challenges of algae based biofuels: A review of the techno‐economic, life cycle, and resource assessment modeling. Bioresource Technology, 184, 444 – 452. https://doi.org/10.1016/j.biortech.2014.10.075
dc.identifier.citedreferenceSavage, P. E. ( 2012 ). Algae under pressure and in hot water. Science, 338 ( 6110 ), 1039 – 1040. https://doi.org/10.1126/science.1224310
dc.identifier.citedreferenceShea, K., & Chesson, P. ( 2002 ). Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution, 17 ( 4 ), 170 – 176. https://doi.org/10.1016/S0169-5347(02)02495-3
dc.identifier.citedreferenceSheehan, J., Dunahay, T., Benemann, J. R., & Roessler, P. ( 1998 ). A look back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from algae. Golden, CO: National Renewable Energy Laboratory, United States Department of Energy. https://doi.org/10.2172/15003040
dc.identifier.citedreferenceShurin, J. B., Abbott, R. L., Deal, M. S., Kwan, G. T., Litchman, E., McBride, R. C., … Smith, V. H. ( 2013 ). Industrial‐strength ecology: Trade‐offs and opportunities in algal biofuel production. Ecology Letters, 16 ( 11 ), 1393 – 1404. https://doi.org/10.1111/ele.12176
dc.identifier.citedreferenceShurin, J. B., Mandal, S., & Abbott, R. L. ( 2014 ). Trait diversity enhances yield in algal biofuel assemblages. Journal of Applied Ecology, 51 ( 3 ), 603 – 611. https://doi.org/10.1111/1365-2664.12242
dc.identifier.citedreferenceSmith, V. H., & McBride, R. C. ( 2015 ). Key ecological challenges in sustainable algal biofuels production. Journal of Plankton Research, 37 ( 4 ), 671 – 682. https://doi.org/10.1093/plankt/fbv053
dc.identifier.citedreferenceSmith, V. H., McBride, R. C., Shurin, J. B., Bever, J. D., Crews, T. E., & Tilman, G. D. ( 2015 ). Crop diversification can contribute to disease risk control in sustainable biofuels production. Frontiers in Ecology and the Environment, 13 ( 10 ), 561 – 567. https://doi.org/10.1890/150094
dc.identifier.citedreferenceStockenreiter, M., Graber, A.‐K., Haupt, F., & Stibor, H. ( 2011 ). The effect of species diversity on lipid production by micro‐algal communities. Journal of Applied Phycology, 24 ( 1 ), 45 – 54.
dc.identifier.citedreferenceStockenreiter, M., Haupt, F., Graber, A.‐K., Seppälä, J., Spilling, K., Tamminen, T., … Buschmann, A. ( 2013 ). Functional group richness: Implications of biodiversity for light use and lipid yield in microalgae. Journal of Phycology, 49 ( 5 ), 838 – 847.
dc.identifier.citedreferenceStockenreiter, M., Haupt, F., Seppälä, J., Tamminen, T., & Spilling, K. ( 2016 ). Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater. Algal Research, 15, 77 – 82. https://doi.org/10.1016/j.algal.2016.02.013
dc.identifier.citedreferenceSturm, B. S. M., Peltier, E., Smith, V., & deNoyelles, F. ( 2012 ). Controls of microalgal biomass and lipid production in municipal wastewater‐fed bioreactors. Environmental Progress & Sustainable Energy, 31 ( 1 ), 10 – 16. https://doi.org/10.1002/ep.10586
dc.identifier.citedreferenceValdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. ( 2012 ). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317 – 331. https://doi.org/10.1016/j.biombioe.2012.08.009
dc.identifier.citedreferenceWiens, J. J., Fargione, J., & Hill, J. ( 2011 ). Biofuels and biodiversity. Ecological Applications, 21 ( 4 ), 1085 – 1095. https://doi.org/10.1890/09-0673.1
dc.identifier.citedreferenceWilliams, P. J. L. B., & Laurens, L. M. L. ( 2010 ). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3 ( 5 ), 554. https://doi.org/10.1039/b924978h
dc.identifier.citedreferenceLefcheck, J. S., Byrnes, J. E., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., … Duffy, J. E. ( 2015 ). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936. https://doi.org/10.1038/ncomms7936
dc.identifier.citedreferenceBeyter, D., Tang, P.‐Z., Becker, S., Hoang, T., Bilgin, D., Lim, Y. W., … Löffler, F. E. ( 2016 ). Diversity, productivity, and stability of an industrial microbial ecosystem. Applied and Environmental Microbiology, 82 ( 8 ), 2494 – 2505. https://doi.org/10.1128/AEM.03965-15
dc.identifier.citedreferenceBhattacharjee, M., & Siemann, E. ( 2015 ). Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae, 30 ( 1 ), 67 – 79. https://doi.org/10.4490/algae.2015.30.1.067
dc.identifier.citedreferenceBold, H. C. ( 1949 ). The morphology of Chlamydomonas chlamydogama sp. Nov. Bulletin of the Torrey Botanical Club, 76, 101 – 108. https://doi.org/10.2307/2482218
dc.identifier.citedreferenceByrnes, J. E. K., Gamfeldt, L., Isbell, F., Lefcheck, J. S., Griffin, J. N., Hector, A., … Duffy, E. J. ( 2014 ). Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions. Methods in Ecology and Evolution, 5 ( 2 ), 111 – 124. https://doi.org/10.1111/2041-210X.12143
dc.identifier.citedreferenceCardinale, B. J., Matulich, K. L., Hooper, D. U., Byrnes, J. E., Duffy, E., Gamfeldt, L., … Gonzalez, A. ( 2011 ). The functional role of producer diversity in ecosystems. American Journal of Botany, 98 ( 3 ), 572 – 592. https://doi.org/10.3732/ajb.1000364
dc.identifier.citedreferenceCho, D. H., Choi, J. W., Kang, Z., Kim, B. H., Oh, H. M., Kim, H. S., & Ramanan, R. ( 2017 ). Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Scientific Reports, 7 ( 1 ), 1979. https://doi.org/10.1038/s41598-017-02139-8
dc.identifier.citedreferenceDavis, R., Fishman, D., Frank, E. D., Wigmosta, M. S., Aden, A., Coleman, A. M., … Wang, M. Q. ( 2012 ). Renewable diesel from algal lipids: An integrated baseline for cost, emissions, and resource potential from a harmonized model. Golden, CO: National Renewable Energy Laboratory (NREL). https://doi.org/10.2172/1044475
dc.identifier.citedreferenceDepartment of Energy, United States ( 2010 ). National algal biofuels technology roadmap. Washington, DC: Office of Energy Efficiency and Renewable Energy Biomass Program.
dc.identifier.citedreferenceEnvironmental Protection Agency, United States ( 2012 ). 2007 National lakes assessment. Retrieved from https://www.epa.gov/national-aquatic-resource-surveys/national-lakes-assessment-2007-results
dc.identifier.citedreferenceFoley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., … Snyder, P. K. ( 2005 ). Global consequences of land use. Science, 309 ( 5734 ), 570 – 574. https://doi.org/10.1126/science.1111772
dc.identifier.citedreferenceFrank, E. D., Elgowainy, A., Han, J., & Wang, Z. ( 2013 ). Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitigation and Adaptation Strategies for Global Change, 18 ( 1 ), 137 – 158. https://doi.org/10.1007/s11027-012-9395-1
dc.identifier.citedreferenceFritschie, K. J., Cardinale, B. J., Alexandrou, M. A., & Oakley, T. H. ( 2014 ). Evolutionary history and the strength of species interactions: Testing the phylogenetic limiting similarity hypothesis. Ecology, 95 ( 5 ), 1407 – 1417. https://doi.org/10.1890/13-0986.1
dc.identifier.citedreferenceGamfeldt, L., & Roger, F. ( 2017 ). Revisiting the biodiversity‐ecosystem multifunctionality relationship. Nature Ecology & Evolution, 1 ( 7 ), 168. https://doi.org/10.1038/s41559-017-0168
dc.identifier.citedreferenceGodwin, C. M., Hietala, D., Lashaway, A., Narwani, A., Savage, P. E., & Cardinale, B. J. ( 2017a ). Algal polycultures enhance coproduct recycling from hydrothermal liquefaction. Bioresource Technology, 224, 630 – 638. https://doi.org/10.1016/j.biortech.2016.11.105
dc.identifier.citedreferenceGodwin, C. M., Hietala, D., Lashaway, A., Narwani, A., Savage, P. E., & Cardinale, B. J. ( 2017b ). Ecological stoichiometry meets ecological engineering: Using polycultures to enhance the multifunctionality of algal biocrude systems. Environmental Science & Technology, 51 ( 19 ), 11450 – 11458. https://doi.org/10.1021/acs.est.7b02137
dc.identifier.citedreferenceGonzalez, A., & Loreau, M. ( 2009 ). The causes and consequences of compensatory dynamics in ecological communities. Annual Review of Ecology, Evolution, and Systematics, 40 ( 1 ), 393 – 414. https://doi.org/10.1146/annurev.ecolsys.39.110707.173349
dc.identifier.citedreferenceGross, K., Cardinale, B. J., Fox, J. W., Gonzalez, A., Loreau, M., Polley, H. W., … van Ruijven, J. ( 2014 ). Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. The American Naturalist, 183 ( 1 ), 1 – 12. https://doi.org/10.1086/673915
dc.identifier.citedreferenceHautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., & Reich, P. B. ( 2015 ). Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348 ( 6232 ), 336 – 340. https://doi.org/10.1126/science.aaa1788
dc.identifier.citedreferenceHietala, D. C., Koss, C. K., Narwani, A., Lashaway, A. R., Godwin, C. M., Cardinale, B. J., & Savage, P. E. ( 2017 ). Influence of biodiversity, biochemical composition, and species identity on the quality of biomass and biocrude oil produced via hydrothermal liquefaction. Algal Research, 26, 203 – 214. https://doi.org/10.1016/j.algal.2017.07.020
dc.identifier.citedreferenceHooper, D. U., Chapin, F., Ewel, J., Hector, A., Inchausti, P., Lavorel, S., … Naeem, S. ( 2005 ). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75 ( 1 ), 3 – 35. https://doi.org/10.1890/04-0922
dc.identifier.citedreferenceKenny, P., & Flynn, K. J. ( 2015 ). In silico optimization for production of biomass and biofuel feedstocks from microalgae. Journal of Applied Phycology, 27, 33 – 48. https://doi.org/10.1007/s10811-014-0342-2
dc.identifier.citedreferenceKuehl, R. O. ( 2000 ). Design of experiments: Statistical principles of research design and analysis ( 2nd ed. ). Pacific Grove, CA: Duxbury/Thomson Learning.
dc.identifier.citedreferenceLiu, J. ( 2016 ). Interspecific biodiversity enhances biomass and lipid productivity of microalgae as biofuel feedstock. Journal of Applied Phycology, 28 ( 1 ), 25 – 33. https://doi.org/10.1007/s10811-015-0535-3
dc.identifier.citedreferenceMcBride, R. C., Lopez, S., Meenach, C., Burnett, M., Lee, P. A., Nohilly, F., & Behnke, C. ( 2014 ). Contamination management in low cost open algae ponds for biofuels production. Industrial Biotechnology, 10 ( 3 ), 221 – 227. https://doi.org/10.1089/ind.2013.0036
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.