Show simple item record

Protein imbalance in the development of skeletal muscle wasting in tumourâ bearing mice

dc.contributor.authorBrown, Jacob L.
dc.contributor.authorLee, David E.
dc.contributor.authorRosa‐caldwell, Megan E.
dc.contributor.authorBrown, Lemuel A.
dc.contributor.authorPerry, Richard A.
dc.contributor.authorHaynie, Wesley S.
dc.contributor.authorHuseman, Kendra
dc.contributor.authorSataranatarajan, Kavithalakshmi
dc.contributor.authorVan Remmen, Holly
dc.contributor.authorWashington, Tyrone A.
dc.contributor.authorWiggs, Michael P.
dc.contributor.authorGreene, Nicholas P.
dc.date.accessioned2018-11-20T15:33:02Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationBrown, Jacob L.; Lee, David E.; Rosa‐caldwell, Megan E. ; Brown, Lemuel A.; Perry, Richard A.; Haynie, Wesley S.; Huseman, Kendra; Sataranatarajan, Kavithalakshmi; Van Remmen, Holly; Washington, Tyrone A.; Wiggs, Michael P.; Greene, Nicholas P. (2018). "Protein imbalance in the development of skeletal muscle wasting in tumourâ bearing mice." Journal of Cachexia, Sarcopenia and Muscle 9(5): 987-1002.
dc.identifier.issn2190-5991
dc.identifier.issn2190-6009
dc.identifier.urihttps://hdl.handle.net/2027.42/146348
dc.description.abstractBackgroundCancer cachexia occurs in approximately 80% of cancer patients and is a key contributor to cancerâ related death. The mechanisms controlling development of tumourâ induced muscle wasting are not fully elucidated. Specifically, the progression and development of cancer cachexia are underexplored. Therefore, we examined skeletal muscle protein turnover throughout the development of cancer cachexia in tumourâ bearing mice.MethodsLewis lung carcinoma (LLC) was injected into the hind flank of C57BL6/J mice at 8 weeks age with tumour allowed to develop for 1, 2, 3, or 4 weeks and compared with PBS injected control. Muscle size was measured by crossâ sectional area analysis of haematoxylin and eosin stained tibialis anterior muscle. 2H2O was used to assess protein synthesis throughout the development of cancer cachexia. Immunoblot and RTâ qPCR were used to measure regulators of protein turnover. TUNEL staining was utilized to measure apoptotic nuclei. LLC conditioned media (LCM) treatment of C2C12 myotubes was used to analyse cancer cachexia in vitro.ResultsMuscle crossâ sectional area decreased ~40% 4 weeks following tumour implantation. Myogenic signalling was suppressed in tumourâ bearing mice as soon as 1 week following tumour implantation, including lower mRNA contents of Pax7, MyoD, CyclinD1, and Myogenin, when compared with control animals. AchRδ and AchRε mRNA contents were downâ regulated by ~50% 3 weeks following tumour implantation. Mixed fractional synthesis rate protein synthesis was ~40% lower in 4 week tumourâ bearing mice when compared with PBS controls. Protein ubiquitination was elevated by ~50% 4 weeks after tumour implantation. Moreover, there was an increase in autophagy machinery after 4 weeks of tumour growth. Finally, ERK and p38 MAPK phosphorylations were fourfold and threefold greater than control muscle 4 weeks following tumour implantation, respectively. Inhibition of p38 MAPK, but not ERK MAPK, in vitro partially rescued LCMâ induced loss of myotube diameter.ConclusionsOur findings work towards understanding the pathophysiological signalling in skeletal muscle in the initial development of cancer cachexia. Shortly following the onset of the tumourâ bearing state alterations in myogenic regulatory factors are apparent, suggesting early onset alterations in the capacity for myogenic induction. Cancer cachexia presents with a combination of a loss of protein synthesis and increased markers of protein breakdown, specifically in the ubiquitinâ proteasome system. Also, p38 MAPK may be a potential therapeutic target to combat cancer cachexia via a p38â FOX01â atrogeneâ ubiquitinâ proteasome mechanism.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherp38
dc.subject.otherMAPK
dc.subject.otherUbiquitin
dc.subject.otherLLC
dc.subject.otherProtein synthesis
dc.subject.otherERK
dc.titleProtein imbalance in the development of skeletal muscle wasting in tumourâ bearing mice
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146348/1/jcsm12354_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146348/2/jcsm12354.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146348/3/jcsm12354_sup-0001-sf1.pdf
dc.identifier.doi10.1002/jcsm.12354
dc.identifier.sourceJournal of Cachexia, Sarcopenia and Muscle
dc.identifier.citedreferenceHyatt JP, Roy RR, Baldwin KM, Edgerton VR. Nerve activityâ independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am J Physiol Cell Physiol 2003; 285: C1161 â C1173.
dc.identifier.citedreferenceLima M, Sato S, Enos RT, Baynes JW, Carson JA. Development of an UPLC mass spectrometry method for measurement of myofibrillar protein synthesis: application to analysis of murine muscles during cancer cachexia. J Appl Physiol 2013; 114: 824 â 828.
dc.identifier.citedreferenceMochamat, Cuhls H, Marinova M, Kaasa S, Stieber C, Conrad R, et al. A systematic review on the role of vitamins, minerals, proteins, and other supplements for the treatment of cachexia in cancer: a European Palliative Care Research Centre cachexia project. J Cachexia Sarcopenia Muscle 2017; 8: 25 â 39.
dc.identifier.citedreferencePin F, Busquets S, Toledo M, Camperi A, Lopezâ Soriano FJ, Costelli P, et al. Combination of exercise training and erythropoietin prevents cancerâ induced muscle alterations. Oncotarget 2015; 6: 43202 â 43215.
dc.identifier.citedreferenceKuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell selfâ renewal and differentiation. Cell Stem Cell 2008; 2: 22 â 31.
dc.identifier.citedreferenceJackson JR, Mula J, Kirby TJ, Fry CS, Lee JD, Ubele MF, et al. Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloadingâ induced atrophy. Am J Physiol Cell Physiol 2012; 303: C854 â C861.
dc.identifier.citedreferenceMurach KA, Englund DA, Dupontâ Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear domain flexibility challenges rigid assumptions on satellite cell contribution to skeletal muscle fiber hypertrophy. Front Physiol. 2018; 9: 635.
dc.identifier.citedreferenceBongers KS, Fox DK, Ebert SM, Kunkel SD, Dyle MC, Bullard SA, et al. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol Endocrinol Metab 2013; 305: E907 â E915.
dc.identifier.citedreferenceFurlow JD, Watson ML, Waddell DS, Neff ES, Baehr LM, Ross AP, et al. Altered gene expression patterns in muscle ring finger 1 null mice during denervationâ and dexamethasoneâ induced muscle atrophy. Physiol Genomics 2013; 45: 1168 â 1185.
dc.identifier.citedreferenceFearon K. Cachexia: treat wasting illness on multiple fronts. Nature 2016; 529: 156.
dc.identifier.citedreferencePennefather P, Quastel DM. Relation between subsynaptic receptor blockade and response to quantal transmitter at the mouse neuromuscular junction. J Gen Physiol 1981; 78: 313 â 344.
dc.identifier.citedreferenceJohns N, Stephens NA, Fearon KC. Muscle wasting in cancer. Int J Biochem Cell Biol 2013; 45: 2215 â 2229.
dc.identifier.citedreferenceToledo M, Busquets S, Penna F, Zhou X, Marmonti E, Betancourt A, et al. Complete reversal of muscle wasting in experimental cancer cachexia: additive effects of activin type II receptor inhibition and βâ 2 agonist. Int J Cancer 2016; 138: 2021 â 2029.
dc.identifier.citedreferenceLlovera M, Garciaâ Martinez C, Lopezâ Soriano J, Agell N, Lopezâ Soriano FJ, Garcia I, et al. Protein turnover in skeletal muscle of tumourâ bearing transgenic mice overexpressing the soluble TNF receptorâ 1. Cancer Lett 1998; 130: 19 â 27.
dc.identifier.citedreferenceHardee JP, Counts BR, Gao S, VanderVeen BN, Fix DK, Koh HJ, et al. Inflammatory signalling regulates eccentric contractionâ induced protein synthesis in cachectic skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9: 369 â 383.
dc.identifier.citedreferenceWhite JP, Puppa MJ, Sato S, Gao S, Price RL, Baynes JW, et al. ILâ 6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skeletal Muscle 2012; 2: 14.
dc.identifier.citedreferenceSchiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013; 280: 4294 â 4314.
dc.identifier.citedreferenceLiu Y, Wang X, Leng W, Pi D, Tu Z, Zhu H, et al. Aspartate inhibits LPSâ induced MAFbx and MuRF1 expression in skeletal muscle in weaned pigs by regulating Akt, AMPKα and FOXO1. J Innate Immun 2017; 23: 34 â 43.
dc.identifier.citedreferenceLevine S, Biswas C, Dierov J, Barsotti R, Shrager JB, Nguyen T, et al. Increased proteolysis, myosin depletion, and atrophic AKTâ FOXO signaling in human diaphragm disuse. Am J Respir Crit Care Med 2011; 183: 483 â 490.
dc.identifier.citedreferenceWynn TA. Cellular and molecular mechanisms of fibrosis. Am J Pathol 2008; 214: 199 â 210.
dc.identifier.citedreferenceShefer G, Oron U, Irintchev A, Wernig A, Halevy O. Skeletal muscle cell activation by lowâ energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 2001; 187: 73 â 80.
dc.identifier.citedreferenceDing H, Zhang G, Sin KW, Liu Z, Lin RK, Li M, et al. Activin A induces skeletal muscle catabolism via p38β mitogenâ activated protein kinase. J Cachexia Sarcopenia Muscle 2017; 8: 202 â 212.
dc.identifier.citedreferenceQuanâ Jun Y, Yan H, Yongâ Long H, Liâ Li W, Jie L, Jinâ Lu H, et al. Selumetinib attenuates skeletal muscle wasting in murine cachexia model through ERK inhibition and AKT ACTIVATION. Mol Cancer Ther 2017; 16: 334 â 343.
dc.identifier.citedreferenceLi YP, Chen Y, John J, Moylan J, Jin B, Mann DL, et al. TNFâ α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 2005; 19: 362 â 370.
dc.identifier.citedreferenceBowen TS, Adams V, Werner S, Fischer T, Vinke P, Brogger MN, et al. Smallâ molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia. J Cachexia Sarcopenia Muscle 2017; 8: 939 â 953.
dc.identifier.citedreferencePenna F, Bonetto A, Aversa Z, Minero VG, Rossi Fanelli F, Costelli P, et al. Effect of the specific proteasome inhibitor bortezomib on cancerâ related muscle wasting. J Cachexia Sarcopenia Muscle 2016; 7: 345 â 354.
dc.identifier.citedreferenceConte E, Camerino GM, Mele A, De Bellis M, Pierno S, Rana F, et al. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatinâ induced cachexia. J Cachexia Sarcopenia Muscle 2017; 8: 386 â 404.
dc.identifier.citedreferenceStewart Coats AJ, Ho GF, Prabhash K, von Haehling S, Tilson J, Brown R, et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV nonâ small cell lung cancer or colorectal cancer: a randomized, doubleâ blind, placeboâ controlled, international multicentre phase II study (the ACTâ ONE trial). J Cachexia Sarcopenia Muscle 2016; 7: 355 â 365.
dc.identifier.citedreferenceToledo M, Penna F, Oliva F, Luque M, Betancourt A, Marmonti E, et al. A multifactorial antiâ cachectic approach for cancer cachexia in a rat model undergoing chemotherapy. J Cachexia Sarcopenia Muscle 2016; 7: 48 â 59.
dc.identifier.citedreferenceMolinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, Penna F, et al. The mitochondrial metabolic reprogramming agent trimetazidine as an â exercise mimeticâ in cachectic C26â bearing mice. J Cachexia Sarcopenia Muscle 2017; 8: 954 â 973.
dc.identifier.citedreferenceBarazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, et al. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle 2017; 8: 991 â 998.
dc.identifier.citedreferencevon Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2017. J Cachexia Sarcopenia Muscle 2017; 8: 1081 â 1083.
dc.identifier.citedreferenceFerlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359 â E386.
dc.identifier.citedreferenceFitzmaurice C, Dicker D, Pain A, Hamavid H, Moradiâ Lakeh M, MacIntyre MF, et al. The Global Burden of Cancer 2013. JAMA Oncol 2015; 1: 505 â 527.
dc.identifier.citedreferenceFearon Kenneth CH, Glass David J, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012; 16: 153 â 166.
dc.identifier.citedreferenceOnesti JK, Guttridge DC. Inflammation based regulation of cancer cachexia. Biomed Res Int 2014; 2014: 168407.
dc.identifier.citedreferenceFearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12: 489 â 495.
dc.identifier.citedreferenceBrown JL, Rosaâ Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, et al. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumourâ bearing mice. J Cachexia Sarcopenia Muscle 2017; 8: 926 â 938.
dc.identifier.citedreferenceNarsale AA, Puppa MJ, Hardee JP, VanderVeen BN, Enos RT, Murphy EA, et al. Shortâ term pyrrolidine dithiocarbamate administration attenuates cachexiaâ induced alterations to muscle and liver in ApcMin/+ mice. Oncotarget 2016; 7: 59482 â 59502.
dc.identifier.citedreferenceOliveira AG, Gomesâ Marcondes MC. Metformin treatment modulates the tumourâ induced wasting effects in muscle protein metabolism minimising the cachexia in tumourâ bearing rats. BMC Cancer 2016; 16: 418.
dc.identifier.citedreferenceSuzuki H, Asakawa A, Amitani H, Nakamura N, Inui A. Cancer cachexiaâ pathophysiology and management. JGH Open 2013; 48: 574 â 594.
dc.identifier.citedreferenceMiyamoto Y, Hanna DL, Zhang W, Baba H, Lenz HJ. Molecular pathways: cachexia signalingâ a targeted approach to cancer treatment. Clin Cancer Res 2016; 22: 3999 â 4004.
dc.identifier.citedreferenceTisdale MJ. The ubiquitinâ proteasome pathway as a therapeutic target for muscle wasting. J Support Oncol 2005; 3: 209 â 217.
dc.identifier.citedreferenceAversa Z, Pin F, Lucia S, Penna F, Verzaro R, Fazi M, et al. Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep 2016; 6: 30340.
dc.identifier.citedreferenceWhite JP, Puppa MJ, Gao S, Sato S, Welle SL, Carson JA. Muscle mTORC1 suppression by ILâ 6 during cancer cachexia: a role for AMPK. Am J Physiol Endocrinol Metab 2013; 304: E1042 â E1052.
dc.identifier.citedreferenceWhite JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S, et al. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc (Min/+) mouse. PloS one. 2011; 6: e24650.
dc.identifier.citedreferencePuppa MJ, Gao S, Narsale AA, Carson JA. Skeletal muscle glycoprotein 130’s role in Lewis lung carcinomaâ induced cachexia. FASEB J 2014; 28: 998 â 1009.
dc.identifier.citedreferenceGingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, et al. Hierarchical phosphorylation of the translation inhibitor 4Eâ BP1. Genes Dev 2001; 15: 2852 â 2864.
dc.identifier.citedreferenceBurnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4Eâ BP1. Proc Natl Acad Sci U S A 1998; 95: 1432 â 1437.
dc.identifier.citedreferencePenna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PloS one. 2010; 5: e13604.
dc.identifier.citedreferenceHe WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomasâ Ahner J, et al. NFâ κBâ mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. The J Clin Invest 2013; 123: 4821 â 4835.
dc.identifier.citedreferenceHettmer S, Wagers AJ. Muscling in: uncovering the origins of rhabdomyosarcoma. Nat Med 2010; 16: 171 â 173.
dc.identifier.citedreferenceKaralaki M, Fili S, Philippou A, Koutsilieris M. Muscle regeneration: cellular and molecular events. In Vivo (Athens, Greece) 2009; 23: 779 â 796.
dc.identifier.citedreferenceAttaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L. The ubiquitinâ proteasome system and skeletal muscle wasting. Essays Biochem 2005; 41: 173 â 186.
dc.identifier.citedreferenceBodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atroginâ 1. Am J Physiol Endocrinol Metab 2014; 307: E469 â E484.
dc.identifier.citedreferenceRom O, Reznick AZ. The role of E3 ubiquitinâ ligases MuRFâ 1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 2016; 98: 218 â 230.
dc.identifier.citedreferenceKobayashi S. Choose delicately and reuse adequately: the newly revealed process of autophagy. Biol Pharm Bull 2015; 38: 1098 â 1103.
dc.identifier.citedreferenceChang YY, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TORâ mediated autophagy regulation. Mol Biol Cell 2009; 20: 2004 â 2014.
dc.identifier.citedreferenceHe C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67 â 93.
dc.identifier.citedreferenceBonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, et al. STAT3 Activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PloS one. 2011; 6: e22538.
dc.identifier.citedreferenceGao S, Carson JA. Lewis lung carcinoma regulation of mechanical stretchâ induced protein synthesis in cultured myotubes. Am J Physiol Cell Physiol 2016; 310: C66 â C79.
dc.identifier.citedreferenceZhang G, Jin B, Li YP. C/EBPβ mediates tumourâ induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting. EMBO J 2011; 30: 4323 â 4335.
dc.identifier.citedreferenceGasier HG, Riechman SE, Wiggs MP, Previs SF, Fluckey JD. A comparison of 2 H 2 O and phenylalanine flooding dose to investigate muscle protein synthesis with acute exercise in rats. Am J Physiol Endocrinol Metab 2009; 297: E252 â E259.
dc.identifier.citedreferenceNilsson MI, Dobson JP, Greene NP, Wiggs MP, Shimkus KL, Wudeck EV, et al. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J 2013; 27: 3905 â 3916.
dc.identifier.citedreferenceHudson MB, Smuder AJ, Nelson WB, Wiggs MP, Shimkus KL, Fluckey JD, et al. Partial support ventilation and mitochondrialâ targeted antioxidants protect against ventilatorâ induced decreases in diaphragm muscle protein synthesis. PLoS One 2015; 10: e0137693.
dc.identifier.citedreferenceNilsson MI, Greene NP, Dobson JP, Wiggs MP, Gasier HG, Macias BR, et al. Insulin resistance syndrome blunts the mitochondrial anabolic response following resistance exercise. Am J Physiol Endocrinol Metab 2010; 299: E466 â E474.
dc.identifier.citedreferenceBrown JL, Rosaâ Caldwell ME, Lee DE, Brown LA, Perry RA, Shimkus KL, et al. PGCâ 1α4 gene expression is suppressed by the ILâ 6â MEKâ ERK 1/2 MAPK signalling axis and altered by resistance exercise, obesity and muscle injury. Acta Physiol (Oxford, England). 2016.
dc.identifier.citedreferenceLee DE, Brown JL, Rosa ME, Brown LA, Perry RA Jr, Wiggs MP, et al. microRNAâ 16 is downregulated during insulin resistance and controls skeletal muscle protein accretion. J Cell Biochem 2016; 117: 1775 â 1787.
dc.identifier.citedreferenceCall JA, Wilson RJ, Laker RC, Zhang M, Kundu M, Yan Z. Ulk1â mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Am J Physiol Cell Physiol 2017; 312: C724 â c32.
dc.identifier.citedreferenceLee DE, Brown JL, Rosaâ Caldwell ME, Blackwell TA, Perry RA Jr, Brown LA, et al. Cancer cachexiaâ induced muscle atrophy: evidence for alterations in microRNAs important for muscle size. Physiol Genomics 2017:physiolgenomics 2017; 00006.
dc.identifier.citedreferenceJackman RW, Floro J, Yoshimine R, Zitin B, Eiampikul M, Elâ Jack K, et al. Continuous release of tumorâ derived factors improves the modeling of cachexia in muscle cell culture. Front Physiol 2017; 8: 738.
dc.identifier.citedreferenceGoodman CA, Hornberger TA. Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques? Exerc Sport Sci Rev 2013; 41: 107 â 115.
dc.identifier.citedreferenceGoodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, et al. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J 2011; 25: 1028 â 1039.
dc.identifier.citedreferenceBuckingham M. Skeletal muscle progenitor cells and the role of Pax genes. C R Biol 2007; 330: 530 â 533.
dc.identifier.citedreferencePain VM. Initiation of protein synthesis in eukaryotic cells. FEBS 1996; 236: 747 â 771.
dc.identifier.citedreferencePorter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, et al. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophinâ deficient mdx mice. Hum Mol Genet 2002; 11: 263 â 272.
dc.identifier.citedreferenceWilde JM, Gumucio JP, Grekin JA, Sarver DC, Noah AC, Ruehlmann DG, et al. Inhibition of p38 mitogenâ activated protein kinase signaling reduces fibrosis and lipid accumulation after rotator cuff repair. J Shoulder Elbow Surg 2016; 25: 1501 â 1508.
dc.identifier.citedreferenceSandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophyâ related ubiquitin ligase atroginâ 1 and cause skeletal muscle atrophy. Cell 2004; 117: 399 â 412.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.