Show simple item record

Human βâ defensinâ 1: A natural antimicrobial peptide present in amniotic fluid that is increased in spontaneous preterm labor with intraâ amniotic infection

dc.contributor.authorVarrey, Aneesha
dc.contributor.authorRomero, Roberto
dc.contributor.authorPanaitescu, Bogdan
dc.contributor.authorMiller, Derek
dc.contributor.authorChaiworapongsa, Tinnakorn
dc.contributor.authorPatwardhan, Manasi
dc.contributor.authorFaro, Jonathan
dc.contributor.authorPacora, Percy
dc.contributor.authorHassan, Sonia S.
dc.contributor.authorHsu, Chaur‐dong
dc.contributor.authorGomez‐lopez, Nardhy
dc.date.accessioned2018-11-20T15:33:16Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationVarrey, Aneesha; Romero, Roberto; Panaitescu, Bogdan; Miller, Derek; Chaiworapongsa, Tinnakorn; Patwardhan, Manasi; Faro, Jonathan; Pacora, Percy; Hassan, Sonia S.; Hsu, Chaur‐dong ; Gomez‐lopez, Nardhy (2018). "Human βâ defensinâ 1: A natural antimicrobial peptide present in amniotic fluid that is increased in spontaneous preterm labor with intraâ amniotic infection." American Journal of Reproductive Immunology 80(4): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/146360
dc.description.abstractProblemHuman βâ defensins (HBDs) are antimicrobial peptides that participate in the soluble innate immune mechanisms against infection. Herein, we determined whether HBDâ 1 was present in amniotic fluid during normal pregnancy and whether its concentrations change with intraâ amniotic inflammation and/or infection.Method of StudyAmniotic fluid was collected from 219 women in the following groups: (a) midtrimester who delivered at term (n = 35); (b) term with (n = 33) or without (n = 17) labor; (c) preterm labor with intact membranes who delivered at term (n = 29) or who delivered preterm with (n = 19) and without (n = 29) intraâ amniotic inflammation and infection or with intraâ amniotic inflammation but without infection (n = 21); and (d) preterm prelabor rupture of membranes (pPROM) with (n = 19) and without (n = 17) intraâ amniotic inflammation/infection. Amniotic fluid HBDâ 1 concentrations were determined using a sensitive and specific ELISA kit.Results(a) HBDâ 1 was detectable in all amniotic fluid samples; (b) amniotic fluid concentrations of HBDâ 1 were changed with gestational age (midtrimester vs term no labor), being higher in midtrimester; (c) amniotic fluid concentrations of HBDâ 1 were similar between women with and without spontaneous labor at term; (d) among patients with spontaneous preterm labor, amniotic fluid concentrations of HBDâ 1 in women with intraâ amniotic inflammation/infection and in those with intraâ amniotic inflammation without infection were greater than in women without intraâ amniotic inflammation or infection who delivered preterm or at term; and (e) the presence of intraâ amniotic inflammation and infection in patients with pPROM did not change amniotic fluid concentrations of HBDâ 1.ConclusionHBDâ 1 is a physiological constituent of amniotic fluid that is increased in midtrimester during normal pregnancy and in the presence of culturable microorganisms in the amniotic cavity. These findings provide insight into the soluble host defense mechanisms against intraâ amniotic infection.Amniotic fluid concentrations of human beta defensinâ 1 (HBDâ 1) in women with spontaneous preterm labor and intact membranes. Red lines indicate medians with interquartile ranges.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpreterm PROM
dc.subject.othersterile intraâ amniotic inflammation
dc.subject.otheracute chorioamnionitis
dc.subject.othercytokines
dc.subject.otherdanger signals
dc.subject.otherfetal immunity
dc.subject.otherfunisitis
dc.subject.otherinnate immunity
dc.subject.othermicrobial invasion of the amniotic cavity
dc.subject.otherneutrophils
dc.titleHuman βâ defensinâ 1: A natural antimicrobial peptide present in amniotic fluid that is increased in spontaneous preterm labor with intraâ amniotic infection
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146360/1/aji13031.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146360/2/aji13031_am.pdf
dc.identifier.doi10.1111/aji.13031
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Chaiyasit N, et al. CXCL10 and ILâ 6: markers of two different forms of intraâ amniotic inflammation in preterm labor. Am J Reprod Immunol. 2017; 78: e12685.
dc.identifier.citedreferenceRomero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006; 11: 317 â 326.
dc.identifier.citedreferenceHaddad R, Tromp G, Kuivaniemi H, et al. Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am J Obstet Gynecol. 2006; 195 ( 394 ): e391 â 324.
dc.identifier.citedreferenceHassan SS, Romero R, Haddad R, et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2006; 195: 778 â 786.
dc.identifier.citedreferenceRomero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007; 65: S194 â S202.
dc.identifier.citedreferenceNorman JE, Bollapragada S, Yuan M, Nelson SM. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth. 2007; 7 ( Suppl 1 ): S7.
dc.identifier.citedreferenceGomezâ Lopez N, Estradaâ Gutierrez G, Jimenezâ Zamudio L, Vegaâ Sanchez R, Vadilloâ Ortega F. Fetal membranes exhibit selective leukocyte chemotaxic activity during human labor. J Reprod Immunol. 2009; 80: 122 â 131.
dc.identifier.citedreferenceYuan M, Jordan F, McInnes IB, Harnett MM, Norman JE. Leukocytes are primed in peripheral blood for activation during term and preterm labour. Mol Hum Reprod. 2009; 15: 713 â 724.
dc.identifier.citedreferenceBollapragada S, Youssef R, Jordan F, Greer I, Norman J, Nelson S. Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am J Obstet Gynecol. 2009; 200 ( 104 ): e101 â e111.
dc.identifier.citedreferenceMittal P, Romero R, Tarca AL, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010; 38: 617 â 643.
dc.identifier.citedreferenceNhanâ Chang CL, Romero R, Tarca AL, et al. Characterization of the transcriptome of chorioamniotic membranes at the site of rupture in spontaneous labor at term. Am J Obstet Gynecol. 2010; 202 ( 462 ): e461 â 441.
dc.identifier.citedreferenceGomezâ Lopez N, Vegaâ Sanchez R, Castilloâ Castrejon M, Romero R, Cubeiroâ Arreola K, Vadilloâ Ortega F. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol. 2013; 69: 212 â 230.
dc.identifier.citedreferenceIbrahim SA, Ackerman W, Summerfield TL, Lockwood CJ, Schatz F, Kniss DA. Inflammatory gene networks in term human decidual cells define a potential signature for cytokineâ mediated parturition. Am J Obstet Gynecol. 2016; 214: 284 e281 â 284 e247.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term. Am J Reprod Immunol. 2017; 77: e12648.
dc.identifier.citedreferenceHerrera CA, Stoerker J, Carlquist J, et al. Cellâ free DNA, inflammation, and the initiation of spontaneous term labor. Am J Obstet Gynecol. 2017; 217: 583 e581 â 583 e588.
dc.identifier.citedreferenceRomero R, Xu Y, Plazyo O, et al. A role for the inflammasome in spontaneous labor at term. Am J Reprod Immunol. 2018; 79: e12440.
dc.identifier.citedreferencePanaitescu B, Romero R, Gomezâ Lopez N, et al. In vivo evidence of inflammasome activation during spontaneous labor at term. J Matern Fetal Neonatal Med. 2018: 1 â 14.
dc.identifier.citedreferenceZagaâ Clavellina V, Ruiz M, Floresâ Espinosa P, et al. Tissueâ specific human betaâ defensins (HBD)â 1, HBDâ 2 and HBDâ 3 secretion profile from human amniochorionic membranes stimulated with Candida albicans in a twoâ compartment tissue culture system. Reprod Biol Endocrinol. 2012; 10: 70.
dc.identifier.citedreferenceVora P, Youdim A, Thomas LS, et al. Betaâ defensinâ 2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol. 2004; 173: 5398 â 5405.
dc.identifier.citedreferenceBeghini J, Giraldo PC, Eleuterio J Jr, Amaral RL, Polpeta NC, Goncalves AK. Vaginal inflammation: association between leukocyte concentration and levels of immune mediators. Am J Reprod Immunol. 2016; 75: 126 â 133.
dc.identifier.citedreferenceSamejima T, Nagamatsu T, Schust DJ, et al. Elevated concentration of secretory leukocyte protease inhibitor in the cervical mucus before delivery. Am J Obstet Gynecol. 2016; 214 ( 741 ): e741 â e747.
dc.identifier.citedreferenceMukura LR, Hickey DK, Rodriguezâ Garcia M, Fahey JV, Wira CR. Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECCâ 1 epithelial cells. Am J Reprod Immunol. 2017; 78: e12764.
dc.identifier.citedreferenceModi BP, Teves ME, Pearson LN, et al. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Mol Genet Genomic Med. 2017; 5: 720 â 729.
dc.identifier.citedreferenceStrauss JF 3rd, Romero R, Gomezâ Lopez N, et al. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am J Obstet Gynecol. 2018; 218: 294 â 314 e292.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Plazyo O, et al. Intraâ amniotic administration of HMGB1 induces spontaneous preterm labor and birth. Am J Reprod Immunol. 2016; 75: 3 â 7.
dc.identifier.citedreferencePlazyo O, Romero R, Unkel R, et al. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol Reprod. 2016; 95: 130.
dc.identifier.citedreferenceBehnia F, Sheller S, Menon R. Mechanistic differences leading to infectious and sterile inflammation. Am J Reprod Immunol. 2016; 75: 505 â 518.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod Sci. 2017; 24: 1382 â 1401.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Plazyo O, et al. Preterm labor in the absence of acute histologic chorioamnionitis is characterized by cellular senescence of the chorioamniotic membranes. Am J Obstet Gynecol. 2017; 217: 592 e591 â 592 e517.
dc.identifier.citedreferenceVardarâ Sengul S, Demirci T, Sen BH, Erkizan V, Kurulgan E, Baylas H. Human beta defensinâ 1 and â 2 expression in the gingiva of patients with specific periodontal diseases. J Periodontal Res. 2007; 42: 429 â 437.
dc.identifier.citedreferenceFang XM, Shu Q, Chen QX, et al. Differential expression of alphaâ and betaâ defensins in human peripheral blood. Eur J Clin Invest. 2003; 33: 82 â 87.
dc.identifier.citedreferenceMercer BM, Miodovnik M, Thurnau GR, et al. Antibiotic therapy for reduction of infant morbidity after preterm premature rupture of the membranes. A randomized controlled trial. National Institute of Child Health and Human Development Maternalâ Fetal Medicine Units Network. JAMA. 1997; 278: 989 â 995.
dc.identifier.citedreferenceMercer BM, Crouse DT, Goldenberg RL, et al. The antibiotic treatment of PPROM study: systemic maternal and fetal markers and perinatal outcomes. Am J Obstet Gynecol. 2012; 206 ( 145 ): e141 â e149.
dc.identifier.citedreferenceSchumann A, Nutten S, Donnicola D, et al. Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol Genomics. 2005; 23: 235 â 245.
dc.identifier.citedreferenceClarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010; 16: 228 â 231.
dc.identifier.citedreferenceGalask RP, Snyder IS. Antimicrobial factors in amniotic fluid. Am J Obstet Gynecol. 1970; 106: 59 â 65.
dc.identifier.citedreferenceMiller J, Michel J, Bercovici B, Argaman M, Sacks T. Studies on the antimicrobial activity of amniotic fluid. Am J Obstet Gynecol. 1976; 125: 212 â 214.
dc.identifier.citedreferenceTafari N, Ross SM, Naeye RL, Galask RP, Zaar B. Failure of bacterial growth inhibition by amniotic fluid. Am J Obstet Gynecol. 1977; 128: 187 â 189.
dc.identifier.citedreferenceThadepalli H, Appleman MD, Maidman JE, Arce JJ, Davidson EC Jr. Antimicrobial effect of amniotic fluid against anaerobic bacteria. Am J Obstet Gynecol. 1977; 127: 250 â 254.
dc.identifier.citedreferenceThadepalli H, Bach VT, Davidson EC Jr. Antimicrobial effect of amniotic fluid. Obstet Gynecol. 1978; 52: 198 â 204.
dc.identifier.citedreferenceThadepalli H, Gangopadhyay PK, Maidman JE. Amniotic fluid analysis for antimicrobial factors. Int J Gynaecol Obstet. 1982; 20: 65 â 72.
dc.identifier.citedreferenceDavis LE, McLaren LC, Stewart JA, James CG, Levine MD, Skipper BJ. Immunological and microbiological studies of midtrimester amniotic fluid. Gynecol Obstet Invest. 1983; 16: 261 â 268.
dc.identifier.citedreferenceSchmidt W. The amniotic fluid compartment: the fetal habitat. Adv Anat Embryol Cell Biol. 1992; 127: 1 â 100.
dc.identifier.citedreferenceSvinarich DM, Gomez R, Romero R. Detection of human defensins in the placenta. Am J Reprod Immunol. 1997; 38: 252 â 255.
dc.identifier.citedreferenceSozanskii AM. The biochemical composition of amniotic fluid and of maternal and fetal blood at various periods of pregnancy. Biull Eksp Biol Med. 1961; 51: 323 â 326.
dc.identifier.citedreferenceNiemela A, Kulomaa M, Vija P, Tuohimaa P, Saarikoski S. Lactoferrin in human amniotic fluid. Hum Reprod. 1989; 4: 99 â 101.
dc.identifier.citedreferenceRueda R, Vargas ML, Garciaâ Pacheco M, Garciaâ Olivares E. Detection of immunoregulatory lipidâ like factors in human amniotic fluid. Am J Reprod Immunol. 1990; 24: 40 â 44.
dc.identifier.citedreferenceCampbell J, Wathen N, Macintosh M, Cass P, Chard T, Mainwaring Burton R. Biochemical composition of amniotic fluid and extraembryonic coelomic fluid in the first trimester of pregnancy. Br J Obstet Gynaecol. 1992; 99: 563 â 565.
dc.identifier.citedreferenceRomero R, Baumann P, Gonzalez R, et al. Amniotic fluid prostanoid concentrations increase early during the course of spontaneous labor at term. Am J Obstet Gynecol. 1994; 171: 1613 â 1620.
dc.identifier.citedreferenceRomero R, Munoz H, Gomez R, et al. Increase in prostaglandin bioavailability precedes the onset of human parturition. Prostaglandins Leukot Essent Fatty Acids. 1996; 54: 187 â 191.
dc.identifier.citedreferenceEdwin SS, Romero RJ, Munoz H, Branch DW, Mitchell MD. 5â Hydroxyeicosatetraenoic acid and human parturition. Prostaglandins. 1996; 51: 403 â 412.
dc.identifier.citedreferenceDrohse H, Christensen H, Myrhoj V, Sorensen S. Characterisation of nonâ maternal serum proteins in amniotic fluid at weeks 16 to 18 of gestation. Clin Chim Acta. 1998; 276: 109 â 120.
dc.identifier.citedreferencePetraglia F, Gomez R, Luisi S, et al. Increased midtrimester amniotic fluid activin A: a risk factor for subsequent fetal death. Am J Obstet Gynecol. 1999; 180: 194 â 197.
dc.identifier.citedreferenceYoshio H, Tollin M, Gudmundsson GH, et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res. 2003; 53: 211 â 216.
dc.identifier.citedreferenceEspinoza J, Chaiworapongsa T, Romero R, et al. Antimicrobial peptides in amniotic fluid: defensins, calprotectin and bacterial/permeabilityâ increasing protein in patients with microbial invasion of the amniotic cavity, intraâ amniotic inflammation, preterm labor and premature rupture of membranes. J Matern Fetal Neonatal Med. 2003; 13: 2 â 21.
dc.identifier.citedreferenceAkinbi HT, Narendran V, Pass AK, Markart P, Hoath SB. Host defense proteins in vernix caseosa and amniotic fluid. Am J Obstet Gynecol. 2004; 191: 2090 â 2096.
dc.identifier.citedreferenceCho CK, Shan SJ, Winsor EJ, Diamandis EP. Proteomics analysis of human amniotic fluid. Mol Cell Proteomics. 2007; 6: 1406 â 1415.
dc.identifier.citedreferenceBujold E, Romero R, Kusanovic JP, et al. Proteomic profiling of amniotic fluid in preterm labor using twoâ dimensional liquid separation and mass spectrometry. J Matern Fetal Neonatal Med. 2008; 21: 697 â 713.
dc.identifier.citedreferenceLee SE, Romero R, Park IS, Seong HS, Park CW, Yoon BH. Amniotic fluid prostaglandin concentrations increase before the onset of spontaneous labor at term. J Matern Fetal Neonatal Med. 2008; 21: 89 â 94.
dc.identifier.citedreferencePerluigi M, Di Domenico F, Cini C, et al. Proteomic analysis for the study of amniotic fluid protein composition. J Prenat Med. 2009; 3: 39 â 41.
dc.identifier.citedreferenceRomero R, Mazakiâ Tovi S, Vaisbuch E, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010; 23: 1344 â 1359.
dc.identifier.citedreferenceWitkin SS, Chervenak J, Bongiovanni AM, Herway C, Linhares IM, Skupski D. Influence of midâ trimester amniotic fluid on endogenous and lipopolysaccharideâ mediated responses of mononuclear lymphoid cells. Am J Reprod Immunol. 2012; 67: 28 â 33.
dc.identifier.citedreferenceMaddipati KR, Romero R, Chaiworapongsa T, et al. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. FASEB J. 2014; 28: 4835 â 4846.
dc.identifier.citedreferencePierce J, Jacobson P, Benedetti E, et al. Collection and characterization of amniotic fluid from scheduled Câ section deliveries. Cell Tissue Bank. 2016; 17: 413 â 425.
dc.identifier.citedreferenceMaddipati KR, Romero R, Chaiworapongsa T, et al. Clinical chorioamnionitis at term: the amniotic fluid fatty acyl lipidome. J Lipid Res. 2016; 57: 1906 â 1916.
dc.identifier.citedreferenceVotta RA, de Gagneten CB, Parada O, Giulietti M. Cytologic study of amniotic fluid in pregnancy. Am J Obstet Gynecol. 1968; 102: 571 â 577.
dc.identifier.citedreferenceHoyes AD. Ultrastructure of the cells of the amniotic fluid. J Obstet Gynaecol Br Commonw. 1968; 75: 164 â 171.
dc.identifier.citedreferenceWachtel E, Gordon H, Olsen E. Cytology of amniotic fluid. J Obstet Gynaecol Br Commonw. 1969; 76: 596 â 602.
dc.identifier.citedreferencePasquinucci C, Dambrosio F, Meroni P, Della Torre L. The amniotic fluid. 3. A morphologic study of cytology. Ann Ostet Ginecol Med Perinat. 1969; 91: 90 â 106.
dc.identifier.citedreferenceCasadei R, D’Ablaing G 3rd, Kaplan BJ, Schwinn CP. A cytologic study of amniotic fluid. Acta Cytol. 1973; 17: 289 â 298.
dc.identifier.citedreferenceSutherland GR, Bauld R, Bain AD. Observations on human amniotic fluid cell strains in serial culture. J Med Genet. 1974; 11: 190 â 195.
dc.identifier.citedreferenceCutz E, Conen PE. Macrophages and epithelial cells in human amniotic fluid: transmission and scanning electron microscopic study. Am J Anat. 1978; 151: 87 â 101.
dc.identifier.citedreferenceSchrage R, Bogelspacher HR, Wurster KG. Amniotic fluid cells in the second trimester of pregnancy. Acta Cytol. 1982; 26: 407 â 416.
dc.identifier.citedreferenceGosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983; 39: 348 â 354.
dc.identifier.citedreferenceMedinaâ Gomez P, McBride WH. Amniotic fluid macrophages from normal and malformed fetuses. Prenat Diagn. 1986; 6: 195 â 205.
dc.identifier.citedreferenceFauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004; 18: 877 â 891.
dc.identifier.citedreferenceLynch W, Rezai S, Henderson CE. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol. 2016; 215: 401.
dc.identifier.citedreferenceMarquardt N, Ivarsson MA, Sundstrom E, et al. Fetal CD103+ ILâ 17â producing group 3 innate lymphoid cells represent the dominant lymphocyte subset in human amniotic fluid. J Immunol. 2016; 197: 3069 â 3075.
dc.identifier.citedreferenceYoung BK, Chan MK, Liu L, Basch RS. Amniotic fluid as a source of multipotent cells for clinical use. J Perinat Med. 2016; 44: 333 â 337.
dc.identifier.citedreferenceDolin CD, Chan MK, Basch RS, Young BK. Human term amniotic fluid: a novel source of stem cells for regenerative medicine. Am J Obstet Gynecol. 2018; pii: S0002â 9378(18)30445â 9.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am J Reprod Immunol. 2018; 79: e12827.
dc.identifier.citedreferenceRomero R, Quintero R, Nores J, et al. Amniotic fluid white blood cell count: a rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery. Am J Obstet Gynecol. 1991; 165: 821 â 830.
dc.identifier.citedreferenceMartinezâ Varea A, Romero R, Xu Y, et al. Clinical chorioamnionitis at term VII: the amniotic fluid cellular immune response. J Perinat Med. 2017; 45: 523 â 538.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am J Obstet Gynecol. 2017; 217: 693 e691 â 693 e616.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Garciaâ Flores V, et al. Amniotic fluid neutrophils can phagocytize bacteria: a mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol. 2017; 78: e12723.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Neutrophil extracellular traps in the amniotic cavity of women with intraâ amniotic infection: a new mechanism of host defense. Reprod Sci. 2017; 24: 1139 â 1153.
dc.identifier.citedreferenceRomero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukinâ 1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989; 160: 1117 â 1123.
dc.identifier.citedreferenceRomero R, Parvizi ST, Oyarzun E, et al. Amniotic fluid interleukinâ 1 in spontaneous labor at term. J Reprod Med. 1990; 35: 235 â 238.
dc.identifier.citedreferenceRomero R, Mazor M, Brandt F, et al. Interleukinâ 1 alpha and interleukinâ 1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992; 27: 117 â 123.
dc.identifier.citedreferenceHillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol. 1993; 81: 941 â 948.
dc.identifier.citedreferenceGomez R, Ghezzi F, Romero R, Munoz H, Tolosa JE, Rojas I. Premature labor and intraâ amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol. 1995; 22: 281 â 342.
dc.identifier.citedreferenceHsu CD, Aversa K, Meaddough E, Lee IS, Copel JA. Elevated amniotic fluid nitric oxide metabolites and cyclic guanosine 3’5’â monophosphate in pregnant women with intraamniotic infection. Am J Obstet Gynecol. 1997; 177: 793 â 796.
dc.identifier.citedreferenceYoon BH, Romero R, Jun JK, et al. Amniotic fluid cytokines (interleukinâ 6, tumor necrosis factorâ alpha, interleukinâ 1 beta, and interleukinâ 8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1997; 177: 825 â 830.
dc.identifier.citedreferenceHsu CD, Meaddough E, Hong SF, Aversa K, Lu LC, Copel JA. Elevated amniotic fluid nitric oxide metabolites and interleukinâ 6 in intraâ amniotic infection. J Soc Gynecol Investig. 1998; 5: 21 â 24.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, et al. Dual roles of amniotic fluid nitric oxide and prostaglandin E2 in preterm labor with intraâ amniotic infection. Am J Perinatol. 1998; 15: 683 â 687.
dc.identifier.citedreferenceAthayde N, Edwin SS, Romero R, et al. A role for matrix metalloproteinaseâ 9 in spontaneous rupture of the fetal membranes. Am J Obstet Gynecol. 1998; 179: 1248 â 1253.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, et al. Elevated amniotic fluid levels of leukemia inhibitory factor, interleukin 6, and interleukin 8 in intraâ amniotic infection. Am J Obstet Gynecol. 1998; 179: 1267 â 1270.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, Copel JA. The role of amniotic fluid Lâ selectin, GROâ alpha, and interleukinâ 8 in the pathogenesis of intraamniotic infection. Am J Obstet Gynecol. 1998; 178: 428 â 432.
dc.identifier.citedreferenceGonzalezâ Bosquet E, Cerqueira MJ, Dominguez C, Gasser I, Bermejo B, Cabero L. Amniotic fluid glucose and cytokines values in the early diagnosis of amniotic infection in patients with preterm labor and intact membranes. J Matern Fetal Med. 1999; 8: 155 â 158.
dc.identifier.citedreferenceHsu CD, Aversa KR, Lu LC, et al. Nitric oxide: a clinically important amniotic fluid marker to distinguish between intraâ amniotic mycoplasma and nonâ mycoplasma infections. Am J Perinatol. 1999; 16: 161 â 166.
dc.identifier.citedreferenceAthayde N, Romero R, Gomez R, et al. Matrix metalloproteinasesâ 9 in preterm and term human parturition. J Matern Fetal Med. 1999; 8: 213 â 219.
dc.identifier.citedreferenceLu LC, Hsu CD. Elevated amniotic fluid nucleosome levels in women with intraâ amniotic infection. Obstet Gynecol. 1999; 94: 7 â 10.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol. 2000; 183: 94 â 99.
dc.identifier.citedreferenceHsu CD, Aversa K, Meaddough E. The role of amniotic fluid interleukinâ 6, and cell adhesion molecules, intercellular adhesion moleculeâ 1 and leukocyte adhesion moleculeâ 1, in intraâ amniotic infection. Am J Reprod Immunol. 2000; 43: 251 â 254.
dc.identifier.citedreferenceHsu CD, Hong SF, Harirah H, Bahadoâ Singh R, Lu L. Amniotic fluid soluble fas levels in intraâ amniotic infection. Obstet Gynecol. 2000; 95: 667 â 670.
dc.identifier.citedreferenceMaymon E, Romero R, Chaiworapongsa T, et al. Value of amniotic fluid neutrophil collagenase concentrations in preterm premature rupture of membranes. Am J Obstet Gynecol. 2001; 185: 1143 â 1148.
dc.identifier.citedreferenceAngus SR, Segel SY, Hsu CD, et al. Amniotic fluid matrix metalloproteinaseâ 8 indicates intraâ amniotic infection. Am J Obstet Gynecol. 2001; 185: 1232 â 1238.
dc.identifier.citedreferenceMaymon E, Romero R, Chaiworapongsa T, et al. Amniotic fluid matrix metalloproteinaseâ 8 in preterm labor with intact membranes. Am J Obstet Gynecol. 2001; 185: 1149 â 1155.
dc.identifier.citedreferenceHelmig BR, Romero R, Espinoza J, et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intraâ amniotic infection. J Matern Fetal Neonatal Med. 2002; 12: 237 â 246.
dc.identifier.citedreferenceHarirah H, Donia SE, Hsu CD. Amniotic fluid matrix metalloproteinaseâ 9 and interleukinâ 6 in predicting intraâ amniotic infection. Obstet Gynecol. 2002; 99: 80 â 84.
dc.identifier.citedreferenceRomero R, Grivel JC, Tarca AL, et al. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol. 2015; 213: 836 e831 â 836 e818.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term II: the intraâ amniotic inflammatory response. J Perinat Med. 2016; 44: 5 â 22.
dc.identifier.citedreferenceSon GH, You YA, Kwon EJ, Lee KY, Kim YJ. Comparative analysis of midtrimester amniotic fluid cytokine levels to predict spontaneous very preâ term birth in patients with cervical insufficiency. Am J Reprod Immunol. 2016; 75: 155 â 161.
dc.identifier.citedreferenceRomero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptideâ 1/interleukinâ 8 in term and preterm parturition. Am J Obstet Gynecol. 1991; 165: 813 â 820.
dc.identifier.citedreferenceHeller KA, Greig PC, Heine RP. Amnioticâ fluid lactoferrin: a marker for subclinical intraamniotic infection prior to 32 weeks gestation. Infect Dis Obstet Gynecol. 1995; 3: 179 â 183.
dc.identifier.citedreferenceOtsuki K, Yoda A, Saito H, et al. Amniotic fluid lactoferrin in intrauterine infection. Placenta. 1999; 20: 175 â 179.
dc.identifier.citedreferencePacora P, Maymon E, Gervasi MT, et al. Lactoferrin in intrauterine infection, human parturition, and rupture of fetal membranes. Am J Obstet Gynecol. 2000; 183: 904 â 910.
dc.identifier.citedreferenceGravett MG, Novy MJ, Rosenfeld RG, et al. Diagnosis of intraâ amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA. 2004; 292: 462 â 469.
dc.identifier.citedreferenceSoto E, Espinoza J, Nien JK, et al. Human betaâ defensinâ 2: a natural antimicrobial peptide present in amniotic fluid participates in the host response to microbial invasion of the amniotic cavity. J Matern Fetal Neonatal Med. 2007; 20: 15 â 22.
dc.identifier.citedreferenceRice WG, Ganz T, Kinkade JM Jr, Selsted ME, Lehrer RI, Parmley RT. Defensinâ rich dense granules of human neutrophils. Blood. 1987; 70: 757 â 765.
dc.identifier.citedreferenceHuttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res. 1999; 45: 785 â 794.
dc.identifier.citedreferenceBals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res. 2000; 1: 141 â 150.
dc.identifier.citedreferenceHancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000; 8: 402 â 410.
dc.identifier.citedreferenceZasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415: 389 â 395.
dc.identifier.citedreferenceGanz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003; 3: 710 â 720.
dc.identifier.citedreferenceTosi MF. Innate immune responses to infection. J Allergy Clin Immunol. 2005; 116: 241 â 249; quiz 250.
dc.identifier.citedreferenceLehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol. 2002; 14: 96 â 102.
dc.identifier.citedreferenceZanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004; 75: 39 â 48.
dc.identifier.citedreferenceGanz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985; 76: 1427 â 1435.
dc.identifier.citedreferenceJones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem. 1992; 267: 23216 â 23225.
dc.identifier.citedreferenceHarwig SS, Park AS, Lehrer RI. Characterization of defensin precursors in mature human neutrophils. Blood. 1992; 79: 1532 â 1537.
dc.identifier.citedreferenceGanz T, Lehrer RI. Defensins. Curr Opin Immunol. 1994; 6: 584 â 589.
dc.identifier.citedreferenceMallow EB, Harris A, Salzman N, et al. Human enteric defensins. Gene structure and developmental expression. J Biol Chem. 1996; 271: 4038 â 4045.
dc.identifier.citedreferenceZhao C, Wang I, Lehrer RI. Widespread expression of betaâ defensin hBDâ 1 in human secretory glands and epithelial cells. FEBS Lett. 1996; 396: 319 â 322.
dc.identifier.citedreferenceJarczak J, Kosciuczuk EM, Lisowski P, et al. Defensins: natural component of human innate immunity. Hum Immunol. 2013; 74: 1069 â 1079.
dc.identifier.citedreferenceSchneider JJ, Unholzer A, Schaller M, Schaferâ Korting M, Korting HC. Human defensins. J Mol Med (Berl). 2005; 83: 587 â 595.
dc.identifier.citedreferenceSemple F, Dorin JR. betaâ Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun. 2012; 4: 337 â 348.
dc.identifier.citedreferenceGanz T, Selsted ME, Lehrer RI. Antimicrobial activity of phagocyte granule proteins. Semin Respir Infect. 1986; 1: 107 â 117.
dc.identifier.citedreferenceGabay JE, Scott RW, Campanelli D, et al. Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1989; 86: 5610 â 5614.
dc.identifier.citedreferencePorter EM, Liu L, Oren A, Anton PA, Ganz T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun. 1997; 65: 2389 â 2395.
dc.identifier.citedreferenceCunliffe RN. Alphaâ defensins in the gastrointestinal tract. Mol Immunol. 2003; 40: 463 â 467.
dc.identifier.citedreferenceHeine RP, Wiesenfeld H, Mortimer L, Greig PC. Amniotic fluid defensins: potential markers of subclinical intrauterine infection. Clin Infect Dis. 1998; 27: 513 â 518.
dc.identifier.citedreferenceErez O, Romero R, Tarca AL, et al. Differential expression pattern of genes encoding for antiâ microbial peptides in the fetal membranes of patients with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 2009; 22: 1103 â 1115.
dc.identifier.citedreferenceSelsted ME, Tang YQ, Morris WL, et al. Purification, primary structures, and antibacterial activities of betaâ defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 1993; 268: 6641 â 6648.
dc.identifier.citedreferenceKing AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JR. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007; 28: 161 â 169.
dc.identifier.citedreferenceRomero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol. 1988; 12: 262 â 279.
dc.identifier.citedreferenceRomero R, Mazor M. Infection and preterm labor. Clin Obstet Gynecol. 1988; 31: 553 â 584.
dc.identifier.citedreferenceRomero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989; 161: 817 â 824.
dc.identifier.citedreferenceRomero R, Shamma F, Avila C, et al. Infection and labor. VI. Prevalence, microbiology, and clinical significance of intraamniotic infection in twin gestations with preterm labor. Am J Obstet Gynecol. 1990; 163: 757 â 761.
dc.identifier.citedreferenceRomero R, Ghidini A, Mazor M, Behnke E. Microbial invasion of the amniotic cavity in premature rupture of membranes. Clin Obstet Gynecol. 1991; 34: 769 â 778.
dc.identifier.citedreferenceRomero R, Mazor M, Morrotti R, et al. Infection and labor. VII. Microbial invasion of the amniotic cavity in spontaneous rupture of membranes at term. Am J Obstet Gynecol. 1992; 166: 129 â 133.
dc.identifier.citedreferenceRomero R, Nores J, Mazor M, et al. Microbial invasion of the amniotic cavity during term labor. Prevalence and clinical significance. J Reprod Med. 1993; 38: 543 â 548.
dc.identifier.citedreferenceYoon BH, Romero R, Moon JB, et al. Clinical significance of intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001; 185: 1130 â 1136.
dc.identifier.citedreferenceSeong HS, Lee SE, Kang JH, Romero R, Yoon BH. The frequency of microbial invasion of the amniotic cavity and histologic chorioamnionitis in women at term with intact membranes in the presence or absence of labor. Am J Obstet Gynecol. 2008; 199 ( 375 ): e371 â e375.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intraâ amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014; 71: 330 â 358.
dc.identifier.citedreferenceRomero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med. 2015; 43: 19 â 36.
dc.identifier.citedreferenceMusilova I, Andrys C, Drahosova M, et al. Amniotic fluid clusterin in pregnancies complicated by the preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2017; 30: 2529 â 2537.
dc.identifier.citedreferenceRowlands S, Danielewski JA, Tabrizi SN, Walker SP, Garland SM. Microbial invasion of the amniotic cavity in midtrimester pregnancies using molecular microbiology. Am J Obstet Gynecol. 2017; 217: 71 e71 â 71 e75.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Alpay Savasan Z, et al. Damageâ associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011; 24: 1444 â 1455.
dc.identifier.citedreferenceGervasi MT, Romero R, Bracalente G, et al. Midtrimester amniotic fluid concentrations of interleukinâ 6 and interferonâ gammaâ inducible proteinâ 10: evidence for heterogeneity of intraâ amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med. 2012; 40: 329 â 343.
dc.identifier.citedreferenceCombs CA, Gravett M, Garite TJ, et al., ProteoGenix/Obstetrix Collaborative Research N. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014; 210: 125 e121 â 125 e115.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Sterile intraâ amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2014; 28: 1343 â 1359.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014; 72: 458 â 474.
dc.identifier.citedreferenceRomero R, Miranda J, Chaemsaithong P, et al. Sterile and microbialâ associated intraâ amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015; 28: 1394 â 1409.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for interleukinâ 6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intraâ amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2016; 29: 360 â 367.
dc.identifier.citedreferenceYoneda N, Yoneda S, Niimi H, et al. Polymicrobial amniotic fluid infection with mycoplasma/ureaplasma and other bacteria induces severe intraâ amniotic inflammation associated with poor perinatal prognosis in preterm labor. Am J Reprod Immunol. 2016; 75: 112 â 125.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A rapid interleukinâ 6 bedside test for the identification of intraâ amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2016; 29: 349 â 359.
dc.identifier.citedreferenceMusilova I, Bestvina T, Hudeckova M, et al. Vaginal fluid interleukinâ 6 concentrations as a pointâ ofâ care test is of value in women with preterm prelabor rupture of membranes. Am J Obstet Gynecol. 2016; 215: 619 e611 â 619 e612.
dc.identifier.citedreferencePark JY, Romero R, Lee J, Chaemsaithong P, Chaiyasit N, Yoon BH. An elevated amniotic fluid prostaglandin F2alpha concentration is associated with intraâ amniotic inflammation/infection, and clinical and histologic chorioamnionitis, as well as impending preterm delivery in patients with preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2016; 29: 2563 â 2572.
dc.identifier.citedreferenceOh KJ, Kim SM, Hong JS, et al. Twentyâ four percent of patients with clinical chorioamnionitis in preterm gestations have no evidence of either cultureâ proven intraamniotic infection or intraamniotic inflammation. Am J Obstet Gynecol. 2017; 216: 604 e601 â 604 e611.
dc.identifier.citedreferenceChaiyasit N, Romero R, Chaemsaithong P, et al. Clinical chorioamnionitis at term VIII: a rapid MMPâ 8 test for the identification of intraâ amniotic inflammation. J Perinat Med. 2017; 45: 539 â 550.
dc.identifier.citedreferencePacora P, Romero R, Erez O, et al. The diagnostic performance of the betaâ glucan assay in the detection of intraâ amniotic infection with Candida species. J Matern Fetal Neonatal Med. 2017: 1 â 18.
dc.identifier.citedreferenceTricomi V, Hall JE, Bittar A, Chambers D. Arborization test for the detection of ruptured fetal membranes. Clinical evaluation. Obstet Gynecol. 1966; 27: 275 â 279.
dc.identifier.citedreferenceFriedman ML, McElin TW. Diagnosis of ruptured fetal membranes. Clinical study and review of the literature. Am J Obstet Gynecol. 1969; 104: 544 â 550.
dc.identifier.citedreferenceBennett SL, Cullen JB, Sherer DM, Woods JR Jr. The ferning and nitrazine tests of amniotic fluid between 12 and 41 weeks gestation. Am J Perinatol. 1993; 10: 101 â 104.
dc.identifier.citedreferenceTchirikov M, Schlabritzâ Loutsevitch N, Maher J, et al. Midâ trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J Perinat Med. 2017; 46: 465 â 488.
dc.identifier.citedreferenceRomero R, Jimenez C, Lohda AK, et al. Amniotic fluid glucose concentration: a rapid and simple method for the detection of intraamniotic infection in preterm labor. Am J Obstet Gynecol. 1990; 163: 968 â 974.
dc.identifier.citedreferenceRomero R, Emamian M, Quintero R, et al. The value and limitations of the Gram stain examination in the diagnosis of intraamniotic infection. Am J Obstet Gynecol. 1988; 159: 114 â 119.
dc.identifier.citedreferenceIavazzo C, Tassis K, Gourgiotis D, et al. The role of human beta defensins 2 and 3 in the second trimester amniotic fluid in predicting preterm labor and premature rupture of membranes. Arch Gynecol Obstet. 2010; 281: 793 â 799.
dc.identifier.citedreferenceStarner TD, Agerberth B, Gudmundsson GH, McCray PB Jr. Expression and activity of betaâ defensins and LLâ 37 in the developing human lung. J Immunol. 2005; 174: 1608 â 1615.
dc.identifier.citedreferenceZagaâ Clavellina V, Martha RV, Floresâ Espinosa P. In vitro secretion profile of proâ inflammatory cytokines ILâ 1beta, TNFâ alpha, ILâ 6, and of human betaâ defensins (HBD)â 1, HBDâ 2, and HBDâ 3 from human chorioamniotic membranes after selective stimulation with Gardnerella vaginalis. Am J Reprod Immunol. 2012; 67: 34 â 43.
dc.identifier.citedreferenceBoldenow E, Jones S, Lieberman RW, et al. Antimicrobial peptide response to group B Streptococcus in human extraplacental membranes in culture. Placenta. 2013; 34: 480 â 485.
dc.identifier.citedreferenceKaiâ Larsen Y, Gudmundsson GH, Agerberth B. A review of the innate immune defence of the human foetus and newborn, with the emphasis on antimicrobial peptides. Acta Paediatr. 2014; 103: 1000 â 1008.
dc.identifier.citedreferenceBoldenow E, Hogan KA, Chames MC, Aronoff DM, Xi C, Lochâ Caruso R. Role of cytokine signaling in group B Streptococcusâ stimulated expression of human beta defensinâ 2 in human extraplacental membranes. Am J Reprod Immunol. 2015; 73: 263 â 272.
dc.identifier.citedreferenceYoung A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002; 66: 445 â 449.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.