Show simple item record

BAMM at the court of false equivalency: A response to Meyer and Wiens

dc.contributor.authorRabosky, Daniel L.
dc.date.accessioned2018-11-20T15:33:28Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationRabosky, Daniel L. (2018). "BAMM at the court of false equivalency: A response to Meyer and Wiens." Evolution 72(10): 2246-2256.
dc.identifier.issn0014-3820
dc.identifier.issn1558-5646
dc.identifier.urihttps://hdl.handle.net/2027.42/146370
dc.description.abstractThe software program BAMM has been widely used to study rates of speciation, extinction, and phenotypic evolution on phylogenetic trees. The program implements a model‐based clustering algorithm to identify clades that share common macroevolutionary rate dynamics and to estimate parameters. A recent simulation study by Meyer and Wiens (M&W) argued that (1) a simple inference framework (MS) performs much better than BAMM, and (2) evolutionary rates inferred with BAMM are poorly correlated with true rates. I address two statistical concerns with their assessment that affect the generality of their conclusions. These considerations are not specific to BAMM and apply to other methods for estimating parameters from empirical data where the true grouping structure of the data is unknown. M&W constrain roughly half of the parameters in their MS analyses to their true values, but BAMM is given no such information and must estimate all parameters from the data. This information disparity results in a substantial degrees of freedom advantage for the MS estimators. When both methods are given equivalent information, BAMM outperforms the MS estimators.
dc.publisherWiley Periodicals, Inc.
dc.publisherOxford Univ. Press
dc.titleBAMM at the court of false equivalency: A response to Meyer and Wiens
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146370/1/evo13566.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146370/2/evo13566_am.pdf
dc.identifier.doi10.1111/evo.13566
dc.identifier.sourceEvolution
dc.identifier.citedreferenceRabosky, D. L., G. J. Slater, and M. E. Alfaro. 2012. Clade age and species richness are decoupled across the Eukaryotic tree of life. PLoS Biol. 10: e1001381.
dc.identifier.citedreferencePritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945 – 959.
dc.identifier.citedreferenceRabosky, D. L. 2009a. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12: 735 – 743.
dc.identifier.citedreferenceRabosky, D. L. 2009b. Ecological limits on clade diversification in higher taxa. Am. Nat. 173: 662 – 674.
dc.identifier.citedreferenceRabosky, D. L. 2014. Automatic detection of key innovations, rate shifts, and diversity‐dependence on phylogenetic trees. PLoS ONE 9: e89543.
dc.identifier.citedreferenceRabosky, D. L., and D. C. Adams. 2012. Rates of morphological evolution are correlated with species richness in salamanders. Evolution 66: 1807 – 1818.
dc.identifier.citedreferenceRabosky, D. L., and H. Huang. 2015. A robust semi‐parametric test for detecting trait‐dependent diversification. Syst. Biol. 65: 181 – 193.
dc.identifier.citedreferenceRabosky, D. L., S. C. Donnellan, M. Grundler, and I. J. Lovette. 2014a. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst. Biol. 63: 610 – 627.
dc.identifier.citedreferenceRabosky, D. L., M. Grundler, C. Anderson, P. Title, J. Shi, H. Huang, J. W. Brown, and J. Larson. 2014b. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5: 701 – 707.
dc.identifier.citedreferenceRabosky, D. L., J. Mitchell, and J. Chang. 2017. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi‐rate diversification models. Syst. Biol. 66: 477 – 498.
dc.identifier.citedreferenceRaup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11: 42 – 52.
dc.identifier.citedreferenceRicklefs, R. E. 2007. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22: 601 – 610.
dc.identifier.citedreferenceSmith, S. A., J. M. Beaulieu, A. Stamatakis, and M. J. Donoghue. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. Am. J. Bot. 98: 404 – 414.
dc.identifier.citedreferenceUyeda, J. C., and L. J. Harmon. 2014. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63: 902 – 918.
dc.identifier.citedreferenceVenditti, C., A. Meade, and M. Pagel. 2011. Multiple routes to mammalian diversity. Nature 479: 393 – 396.
dc.identifier.citedreferenceAlfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Nat. Acad. Sci. USA 106: 13410 – 13414.
dc.identifier.citedreferenceCadena, C. D., F. Zapata, and I. Jimenez. 2017. Issues and perspectives in species delimitation using phenotypic data: Atlantean evolution in Darwin’s finches. Syst. Biol. https://doi.org/10.1093/sysbio/syx071.
dc.identifier.citedreferenceCorander, J., P. Marttinen, J. Corander, and J. Tang. 2008. Enhanced Baeysian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9: 539.
dc.identifier.citedreferenceDrummond, A. J., and M. A. Suchard. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8: 114.
dc.identifier.citedreferenceEastman, J. M., M. E. Alfaro, P. Joyce, A. L. Hipp, and L. J. Harmon. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65: 3578 – 3589.
dc.identifier.citedreferenceEtienne, R. S., and B. Haegeman. 2012. A conceptual and statistical Framework for adaptive radiations with a key role for diversity dependence. Am. Nat. 180: E75 – E89.
dc.identifier.citedreferenceFitzJohn, R., W. P. Maddison, and S. P. Otto. 2009. Estimating trait‐dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58: 595 – 611.
dc.identifier.citedreferenceFitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3: 1084 – 1092.
dc.identifier.citedreferenceHeath, T. A., M. T. Holder, and J. P. Huelsenbeck. 2011. A Dirichlet process prior for estimating lineage‐specific substitution rates. Mol. Biol. Evol. 29: 939 – 955.
dc.identifier.citedreferenceKruschke, J. K., and W. Vanpaemel. 2015. Bayesian estimation in hierarchical models. Pp. 279 – 299 in J. T. Townsend and A. Eidels, eds. The Oxford handbook of computational and mathematical psychology. Oxford Univ. Press, Oxford, U.K.
dc.identifier.citedreferenceLanfear, R., B. Calcott, D. Kainer, C. Mayer, and A. Stamatakis. 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14: 82.
dc.identifier.citedreferenceLewitus, E., and H. Morlon. 2016. Characterizing and comparing phylogenies from their Laplacian spectrum. Syst. Biol. 65: 495 – 507.
dc.identifier.citedreferenceMagallon, S., and M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762 – 1780.
dc.identifier.citedreferenceMeyer, A. L. S., and J. J. Wiens. 2017. Estimating diversification rates for higher taxa: BAMM can give problematic estimate of rates and rate shifts. Evolution. https://doi.org/10.1111/evo.13378.
dc.identifier.citedreferenceMitchell, J. S., and D. L. Rabosky. 2016. Bayesian model selection with BAMM: effects of the model prior on the inferred number of diversification shifts. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12626.
dc.identifier.citedreferenceMoore B. R., S. Hohna, M. R. May, B. Rannala, and J. P. Huelsenbeck. 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl. Acad. Sci. USA 113: 9569 – 9574.
dc.identifier.citedreferenceMorlon, H., T. L. Parsons, and J. B. Plotkin. 2011. Reconciling molecular phylogenies with the fossil record. Proc. Nat. Acad. Sci. USA 108: 16327 – 16332.
dc.identifier.citedreferenceMorlon, H., E. Lewitus, F. L. Condamine, M. Manceau, J. Clavel, and J. Drury. 2016. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7: 589 – 597.
dc.identifier.citedreferenceNee, S. 2006. Birth‐death models in macroevolution. Ann. Rev. Ecol. Evol. Syst. 37: 1 – 17.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.