Show simple item record

Why do plants produce so many terpenoid compounds?

dc.contributor.authorPichersky, Eran
dc.contributor.authorRaguso, Robert A.
dc.date.accessioned2018-11-20T15:33:30Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationPichersky, Eran; Raguso, Robert A. (2018). "Why do plants produce so many terpenoid compounds?." New Phytologist 220(3): 692-702.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/146372
dc.publisherAmerican Chemical Society
dc.publisherWiley Periodicals, Inc.
dc.subject.otherterpenes
dc.subject.otherbiochemistry
dc.subject.otherevolution
dc.subject.otherplant defense
dc.subject.othersecondary metabolism
dc.subject.otherspecialized metabolites
dc.titleWhy do plants produce so many terpenoid compounds?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146372/1/nph14178.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146372/2/nph14178_am.pdf
dc.identifier.doi10.1111/nph.14178
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceQu Y, Chakrabaty R, Iran HT, Kwon EJG, Kwon M, Nguyen TD, Ro DK. 2015. Lettuce ( Lactuca sativa ) homolog of human Nogo‐B receptor interacts with cis‐prenyltransferase and is necessary for natural rubber biosynthesis. Journal of Biological Chemistry 290: 1898 – 1914.
dc.identifier.citedreferenceRaffa KF. 2014. Terpenes tell different tales at different scales: glimpses into the chemical ecology of conifer‐bark beetle–microbial interactions. Journal of Chemical Ecology 40: 1 – 20.
dc.identifier.citedreferenceRaguso RA, Agrawal AA, Douglas AE, Kessler A, Poveda K, Thaler JS. 2015. The raison d’être of chemical ecology. Ecology 96: 617 – 630.
dc.identifier.citedreferenceRichards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS. 2015. Phytochemical diversity drives plant–insect community diversity. Proceedings of the National Academy of Sciences, USA 112: 10973 – 10978.
dc.identifier.citedreferenceSadler NC, Wright AT. 2015. Activity‐based protein profiling of microbes. Current Opinion in Chemical Biology 24: 139 – 144.
dc.identifier.citedreferenceSchiestl FP. 2010. The evolution of floral scent and insect chemical communication. Ecology Letters 13: 643 – 656.
dc.identifier.citedreferenceSchwab W, Fuchs C, Huang FC. 2013. Transformation of terpenes into fine chemicals. European Journal of Lipid Science 115: 3 – 8.
dc.identifier.citedreferenceSteele CL, Crock J, Bohlmann J, Croteau R. 1998. Sesquiterpene synthases from grang fir (Abies grandis) – comparison of constitutive and wound‐induced activities, and CDNA isolation, characterization and bacterial expresson of delta‐selinene synthase and gamma‐humulene synthase. Journal of Biological Chemistry 273: 2078 – 2089.
dc.identifier.citedreferenceStewart A. 2013. The drunken botanist: the plants that create the World’s great drinks. Chapel Hill, NC, USA: Algonquin Books of Chapel Hill.
dc.identifier.citedreferenceSvensson GP, Hickman MO Jr, Bartram S, Boland W, Pellmyr O, Raguso RA. 2005. Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). American Journal of Botany 92: 1624 – 1631.
dc.identifier.citedreferenceTassou CC, Chorianopoulos NG, Skandamis PN, Nychas GJE. 2012. Herbs, spices and their active components as natural antimicrobials in foods. In: KV Peter, ed. Handbook of herbs and spices, vol. 2. Issue 228. Cambridge, UK: Woodhead Publishing, 17 – 50.
dc.identifier.citedreferenceTerry I, Walter GH, Moore C, Roemer R, Hull C. 2007. Odor‐mediated push–pull pollination in cycads. Science 318: 70.
dc.identifier.citedreferenceTurlings TC, Hiltpold I, Rasmann S. 2012. The importance of root‐produced volatiles as foraging cues for entomopathogenic nematodes. Plant and Soil 358: 51 – 60.
dc.identifier.citedreferenceVelikova V, Muller C, Ghirardo A, Rock TM, Aichler M, Walch A, Schmitt‐Kopplin P, Schnitzler JP. 2015. Knocking down of isoprene emission modifies the lipid matrix of thylakoid membranes and influences the chloroplast ultrastructure in poplar. Plant Physiology 168: 859 – 870.
dc.identifier.citedreferenceVriet C, Russinova E, Reuzeau C. 2013. From squalene to brassinolide: the steroid metabolic and signaling pathway across the plant kingdom. Molecular Plant 6: 1738 – 1757.
dc.identifier.citedreferenceWang X, Ort DR, Yuan JS. 2015. Photosynthetic terpene hydrocarbon production for fuels and chemicals. Plant Biotechnology Journal 13: 137 – 146.
dc.identifier.citedreferenceZapata F, Fine PV. 2013. Diversification of the monoterpene synthase gene family (TPSb) in Protium, a highly diverse genus of tropical trees. Molecular Phylogenetics & Evolution 68: 432 – 442.
dc.identifier.citedreferenceZhou YP, Stuart‐Williams H, Grice K, Kayler ZE, Zavadlav S, Vogts A, Rommerskirchen F, Farquhar GD, Gessler A. 2015. Allocate carbon for a reason: priorities are reflected in the 13 C/ 12 C ratios of plant lipids synthesized via three independent biosynthetic pathways. Phytochemistry 111: 14 – 20.
dc.identifier.citedreferenceZi JC, Mafu S, Peters RJ. 2014. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annual Review of Plant Biology 65: 259 – 286.
dc.identifier.citedreferenceZimmer RK, Ferrer RP. 2007. Neuroecology, chemical defense and the keystone species concept. Biological Bulletin 213: 208 – 225.
dc.identifier.citedreferenceZimmermann Y, Roubik DW, Eltz T. 2006. Species‐specific attraction to pheromonal analogues in orchid bees. Behavioral Ecology and Sociobiology 60: 833 – 843.
dc.identifier.citedreferenceAgrawal AA, Fishbein M. 2006. Plant defense syndromes. Ecology 87: S132 – S149.
dc.identifier.citedreferenceAgrawal AA, Fishbein M, Halitschke R, Hastings AP, Rabosky DL, Rasmann S. 2009. Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proceedings of the National Academy of Sciences, USA 106: 18067 – 18072.
dc.identifier.citedreferenceAgrawal AA, Konno K. 2009. Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annual Review of Ecology and Evolutionary Systematics 40: 311 – 331.
dc.identifier.citedreferenceAgrawal AA, Lajeunesse MJ, Fishbein M. 2008. Evolution of latex and its constituent defensive chemistry in milkweeds ( Asclepias ): a phylogenetic test of plant defense escalation. Entomologia Experimentalis et Applicata 128: 126 – 138.
dc.identifier.citedreferenceAgrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. 2012. Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytologist 194: 28 – 45.
dc.identifier.citedreferenceAl‐Babili A, Bouwmeester HJ. 2015. Strigolactones, a novel carotenoid‐derived plant hormone. Annual Review of Plant Biology 66: 161 – 186.
dc.identifier.citedreferenceAgerbirk N, Olsen CE. 2012. Glucosinolate structures in evolution. Phytochemistry 77: 16 – 45.
dc.identifier.citedreferenceArmbruster WS. 1993. Evolution of plant pollination systems: hypotheses and tests with the neotropical vine Dalechampia. Evolution 47: 1480 – 1505.
dc.identifier.citedreferenceArmbruster WS, Howard JJ, Clausen TP, Debevec EM, Loquvam JC, Matsuki M, Cerendolo B, Andel F. 1997. Do biochemical exaptations link evolution of plant defense and pollination systems? Historical hypotheses and experimental tests with Dalechampia vines. American Naturalist 149: 461 – 484.
dc.identifier.citedreferenceArmbruster WS, Lee J, Baldwin BG. 2009. Macroevolutionary patterns of defense and pollination in Dalechampia vines: adaptation, exaptation, and evolutionary novelty. Proceedings of the National Academy of Sciences, USA 106: 18085 – 18090.
dc.identifier.citedreferenceBatish DR, Singh HP, Kohli RK, Kaur S. 2008. Eucalyptus essential oil as a natural pesticide. Forest Ecology & Management 256: 2166 – 2174.
dc.identifier.citedreferenceBecerra JX. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276: 253 – 256.
dc.identifier.citedreferenceBecerra JX. 2003. Synchronous coadaptation in an ancient case of herbivory. Proceedings of the National Academy of Sciences, USA 100: 12804 – 12807.
dc.identifier.citedreferenceBecerra JX. 2007. The impact of herbivore–plant coevolution on plant community structure. Proceedings of the National Academy of Sciences, USA 104: 7483 – 7488.
dc.identifier.citedreferenceBecerra JX, Noge K, Venable DL. 2009. Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. Proceedings of the National Academy of Sciences, USA 106: 18062 – 18066.
dc.identifier.citedreferenceBerenbaum M. 1983. Coumarins and caterpillars – a case for coevolution. Evolution 37: 163 – 179.
dc.identifier.citedreferenceBerenbaum MR, Zangerl AR. 2008. Facing the future of plant–insect interaction research: le retour à la “raison d’être”. Plant Physiology 146: 804 – 811.
dc.identifier.citedreferenceBramer C, Dobler S, Deckert J, Stemmer M, Petschenka G. 2015. Na + /K + ‐ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae ). Proceedings of the Royal Society B: Biological Sciences 282: 20142346.
dc.identifier.citedreferenceBrasher MI, Surmacz L, Leong B, Pitcher J, Swiezewska E, Pichersky E, Akhtar TA. 2015. A two‐component enzyme complex is required for dolichol biosynthesis in tomato. Plant Journal 82: 903 – 914.
dc.identifier.citedreferenceBurow M, Atwell S, Francisco M, Kerwin RE, Halkier BA, Kliebenstein DJ. 2015. The glucosinolate biosynthetic gene AOP2 mediates feed‐back regulation of jasmonic acid signaling in Arabidopsis. Molecular Plant 8: 1201 – 1212.
dc.identifier.citedreferenceChen C, Song Q. 2008. Responses of the pollinating wasp Ceratosolen solmsi marchali to odor variation between two floral stages of Ficus hispida. Journal of Chemical Ecology 34: 1536 – 1544.
dc.identifier.citedreferenceChen F, Ro D‐K, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D. 2004. Characterization of a root‐specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8‐cineole. Plant Physiology 135: 1956 – 1966.
dc.identifier.citedreferencevan Dam NM, Bouwmeester HJ. 2016. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends in Plant Science 21: 256 – 265.
dc.identifier.citedreferenceDemissie ZA, Erland LA, Rheault MR, Mahmoud SS. 2013. The biosynthetic origin of irregular monoterpenes in Lavandula. Journal of Biological Chemistry 288: 6333 – 6341.
dc.identifier.citedreferenceDjerassi C. 1990b. Steroids made it possible, series title. In: Seeman JI, series ed. Profiles, pathways, and dreams. Washington, DC, USA: American Chemical Society.
dc.identifier.citedreferenceDötterl S, Jürgens A, Seifert K, Laube T, Weissbecker B, Schütz S. 2006. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytologist 169: 707 – 718.
dc.identifier.citedreferenceEhrlich PR, Raven PH. 1964. Butterflies and plants – a study of coevolution. Evolution 18: 586 – 608.
dc.identifier.citedreferenceFarrell BD, Dussourd DE, Mitter C. 1991. Escalation of plant defense: do latex and resin canals spur plant diversification? American Naturalist 138: 881 – 900.
dc.identifier.citedreferenceFine PV, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Sääksjärvi I, Schultz JC, Coley PD. 2006. The growth–defense trade‐off and habitat specialization by plants in Amazonian forests. Ecology 87: S150 – S162.
dc.identifier.citedreferenceFirn RD, Jones CG. 2003. Natural products – a simple model to explain chemical diversity. Natural Product Reports 20: 382 – 391.
dc.identifier.citedreferenceFraenkel GS. 1959. The raison d’être of secondary plant substances. Science 129: 1466 – 1470.
dc.identifier.citedreferenceGeu‐Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE. 2012. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492: 138 – 142.
dc.identifier.citedreferenceGinglinger JF, Boachon B, Höfer R, Paetz C, Köllner TG, Miesch L, Lugan R, Baltenweck R, Mutterer J, Ullmann P et al. 2013. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. Plant Cell 25: 4640 – 4657.
dc.identifier.citedreferenceHarmon LJ, Kolbe JJ, Cheverud JM, Losos JB. 2005. Convergence and multidimensional niche. Evolution 59: 409 – 421.
dc.identifier.citedreferenceHartmann T. 2007. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68: 2831 – 2846.
dc.identifier.citedreferenceHay ME. 2009. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annual Review of Marine Science 1: 193 – 212.
dc.identifier.citedreferenceHeiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR, Baldwin IT. 2010. Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17‐hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22: 273 – 292.
dc.identifier.citedreferenceHendry ER, Worthington T, Conway BR, Lambert PA. 2009. Antimicrobial efficacy of eucalyptus oil and 1,8‐cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. Journal of Antimicrobial Chemotherapy 64: 1219 – 1225.
dc.identifier.citedreferenceJulsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O. 2006. Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomolecular Engineering 23: 265 – 279.
dc.identifier.citedreferenceJunker RR, Blüthgen N. 2010. Floral scents repel facultative flower visitors, but attract obligate ones. Annals of Botany 105: 777 – 782.
dc.identifier.citedreferenceJunker RR, Gershenzon J, Unsicker SB. 2011. Floral odor bouquet loses its ant repellent properties after inhibition of terpene biosynthesis. Journal of Chemical Ecology 37: 1323 – 1331.
dc.identifier.citedreferenceJunker RR, Tholl D. 2013. Volatile organic compound mediated interactions at the plant–microbe interface. Journal of Chemical Ecology 39: 810 – 825.
dc.identifier.citedreferenceKessler A, Halitschke R, Baldwin IT. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305: 665 – 668.
dc.identifier.citedreferenceKessler A, Heil M. 2011. The multiple faces of indirect defences and their agents of natural selection. Functional Ecology 25: 348 – 357.
dc.identifier.citedreferenceKessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT. 2013. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecology Letters 16: 299 – 306.
dc.identifier.citedreferenceKessler D, Gase K, Baldwin IT. 2008. Field experiments with transformed plants reveal the sense of floral scents. Science 321: 1200 – 1202.
dc.identifier.citedreferenceKhan ZR, Pickett JA, Hassanali A, Hooper AM, Midega CAO. 2008. Desmodium species and associated biochemical traits for controlling Striga species: present and future prospects. Weed Research 48: 302 – 306.
dc.identifier.citedreferenceKursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE, Weber MG, Murakami ET, Drake C, McGregor R, Coley PD. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proceedings of the National Academy of Sciences, USA 106: 18073 – 18078.
dc.identifier.citedreferenceLangenheim JH. 2003. Plant resins: chemistry, evolution, ecology, and ethnobotany. Portland, OR, USA: Timber Press.
dc.identifier.citedreferenceLee BH, Annis PC, Choi WS. 2004. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8‐cineole against 3 major stored‐grain insects. Journal of Stored Products Research 40: 553 – 564.
dc.identifier.citedreferenceOsbourn AE, Qi X, Townsend BT, Qin B. 2003. Dissecting plant secondary metabolism – constitutive chemical defences in cereals. New Phytologist 159: 101 – 108.
dc.identifier.citedreferencePerry NS, Bollen C, Perry EK, Ballard C. 2003. Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacology Biochemistry & Behavior 75: 651 – 659.
dc.identifier.citedreferencePetschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S. 2013. Stepwise evolution of resistance to toxic cardenolides via genetic substitution in the Na + /K + ‐ATPases of milkweed butterflies (Lepidoptera: Danaini). Evolution 67: 2753 – 2761.
dc.identifier.citedreferencePichersky E, Noel JP, Dudareva N. 2006. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 311: 808 – 811.
dc.identifier.citedreferencePichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology 62: 549 – 566.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.