Show simple item record

Surface‐Reactive Patchy Nanoparticles and Nanodiscs Prepared by Tandem Nanoprecipitation and Internal Phase Separation

dc.contributor.authorVaradharajan, Divya
dc.contributor.authorTurgut, Hatice
dc.contributor.authorLahann, Joerg
dc.contributor.authorYabu, Hiroshi
dc.contributor.authorDelaittre, Guillaume
dc.date.accessioned2018-11-20T15:33:47Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationVaradharajan, Divya; Turgut, Hatice; Lahann, Joerg; Yabu, Hiroshi; Delaittre, Guillaume (2018). "Surface‐Reactive Patchy Nanoparticles and Nanodiscs Prepared by Tandem Nanoprecipitation and Internal Phase Separation." Advanced Functional Materials 28(39): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/146386
dc.description.abstractNanoparticles with structural or chemical anisotropy are promising materials in domains as diverse as cellular delivery, photonic materials, or interfacial engineering. The surface chemistry may play a major role in some of these contexts. Introducing reactivity into such polymeric nanomaterials is thus of great potential, yet is still a concept in its infancy. In the current contribution, a simple nanoprecipitation technique leads to nanoparticles with diameters as low as 150 nm and well‐defined reactive surface patches of less than 30 nm in width, as well as surface‐reactive flat, disc‐like nanoparticles with corresponding dimensions, via an additional crosslinking/delamination sequence. To this aim, chemically doped block copolymers (BCPs) are employed. Control over morphology is attained by tuning preparation conditions, such as polymer concentration, solvent mixture composition, and blending with non‐functional BCP. Surface reactivity is demonstrated using a modular ligation method for the site‐selective immobilization of thiol molecules. The current approach constitutes a straightforward methodology requiring minimal engineering to produce nanoparticles with confined surface reactivity and/or shape anisotropy.Nanoparticles with surface‐expressed reactive patches and corresponding nanodiscs are prepared by a simple nanoprecipitation technique with functional block copolymers. The surface pattern formation is controlled by preparation conditions (concentration, solvent, and functionality). Spatially confined functionalization is demonstrated by grafting model thiol compounds. These nanomaterials are structurally approaching biological particles and are interesting building blocks for colloidal assemblies.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfunctional block copolymers
dc.subject.othernanoparticles
dc.subject.othernanodiscs
dc.subject.othermorphology control
dc.subject.otherpara‐fluoro–thiol reaction
dc.titleSurface‐Reactive Patchy Nanoparticles and Nanodiscs Prepared by Tandem Nanoprecipitation and Internal Phase Separation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146386/1/adfm201800846_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146386/2/adfm201800846.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146386/3/adfm201800846-sup-0001-S1.pdf
dc.identifier.doi10.1002/adfm.201800846
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceH. Yabu, T. Higuchi, K. Ijiro, M. Shimomura, Chaos 2005, 15, 47505.
dc.identifier.citedreferenceY. Hirai, T. Wakiya, H. Yabu, Polym. Chem. 2017, 8, 1754.
dc.identifier.citedreferenceB. V. K. J. Schmidt, C. X. Wang, S. Kraemer, L. A. Connal, D. Klinger, Polym. Chem. 2018, 9, 1638.
dc.identifier.citedreferenceH. Yabu, T. Higuchi, M. Shimomura, Adv. Mater. 2005, 17, 2062.
dc.identifier.citedreferenceH. Turgut, N. Dingenouts, V. Trouillet, P. Krolla‐Sidenstein, H. Gliemann, G. Delaittre, unpublished.
dc.identifier.citedreferenceF. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32.
dc.identifier.citedreferenceS. Egli, H. Schlaad, N. Bruns, W. Meier, Polymers 2011, 3, 252.
dc.identifier.citedreferenceI. Wyman, G. Njikang, G. Liu, Prog. Polym. Sci. 2011, 36, 1152.
dc.identifier.citedreferenceZ. Jin, H. Fan, Soft Matter 2014, 10, 9212.
dc.identifier.citedreferenceC. A. Vaine, M. K. Patel, J. Zhu, E. Lee, R. W. Finberg, R. C. Hayward, E. A. Kurt‐Jones, J. Immunol. 2013, 190, 3525 LP.
dc.identifier.citedreferenceK. Yang, Y.‐Q. Ma, Nat. Nanotechnol. 2010, 5, 579.
dc.identifier.citedreferenceS.‐J. Jeon, G.‐R. Yi, S.‐M. Yang, Adv. Mater. 2008, 20, 4103.
dc.identifier.citedreferenceM. Pinna, X. Guo, A. V. Zvelindovsky, Polymer 2008, 49, 2797.
dc.identifier.citedreferenceB. Yu, B. Li, Q. Jin, D. Ding, A.‐C. Shi, Macromolecules 2007, 40, 9133.
dc.identifier.citedreferenceK. Motoyoshi, A. Tajima, T. Higuchi, H. Yabu, M. Shimomura, Soft Matter 2010, 6, 1253.
dc.identifier.citedreferenceL. Li, K. Matsunaga, J. Zhu, T. Higuchi, H. Yabu, M. Shimomura, H. Jinnai, R. C. Hayward, T. P. Russell, Macromolecules 2010, 43, 7807.
dc.identifier.citedreferenceT. Higuchi, K. Motoyoshi, H. Sugimori, H. Jinnai, H. Yabu, M. Shimomura, Macromol. Rapid Commun. 2010, 31, 1773.
dc.identifier.citedreferenceE. Avalos, T. Teramoto, H. Komiyama, H. Yabu, Y. Nishiura, ACS Omega 2018, 3, 1304.
dc.identifier.citedreferenceE. Avalos, T. Higuchi, T. Teramoto, H. Yabu, Y. Nishiura, Soft Matter 2016, 12, 5905.
dc.identifier.citedreferenceG. Delaittre, L. Barner, Polym. Chem. 2018, 9, 2679.
dc.identifier.citedreferenceH. Turgut, A. C. Schmidt, P. Wadhwani, A. Welle, R. Müller, G. Delaittre, Polym. Chem. 2017, 8, 1288.
dc.identifier.citedreferenceF. Kazenwadel, M. Franzreb, B. E. Rapp, Anal. Methods 2015, 7, 4030.
dc.identifier.citedreferenceX. Qu, L. Omar, T. B. H. Le, L. Tetley, K. Bolton, K. W. Chooi, W. Wang, I. F. Uchegbu, Langmuir 2008, 24, 9997.
dc.identifier.citedreferenceT. H. Bayburt, S. G. Sligar, FEBS Lett. 2010, 584, 1721.
dc.identifier.citedreferenceC. MessaoudiI, T. Boudier, C. O. S. Sorzano, S. Marco, BMC Bioinformatics 2007, 8, 288.
dc.identifier.citedreferenceA. H. Gröschel, A. Walther, T. I. Löbling, F. H. Schacher, H. Schmalz, A. H. E. Müller, Nature 2013, 503, 247.
dc.identifier.citedreferenceD. Klinger, C. X. Wang, L. A. Connal, D. J. Audus, S. G. Jang, S. Kraemer, K. L. Killops, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Angew. Chem., Int. Ed. 2014, 53, 7018.
dc.identifier.citedreferenceC. V. Synatschke, T. Nomoto, H. Cabral, M. Förtsch, K. Toh, Y. Matsumoto, K. Miyazaki, A. Hanisch, F. H. Schacher, A. Kishimura, N. Nishiyama, A. H. E. Müller, K. Kataoka, ACS Nano 2014, 8, 1161.
dc.identifier.citedreferenceS. Zhang, H.‐J. Sun, A. D. Hughes, R.‐O. Moussodia, A. Bertin, Y. Chen, D. J. Pochan, P. A. Heiney, M. L. Klein, V. Percec, Proc. Natl. Acad. Sci. USA 2014, 111, 9058 LP.
dc.identifier.citedreferenceS. Ravaine, E. Duguet, Curr. Opin. Colloid Interface Sci. 2017, 30, 45.
dc.identifier.citedreferenceT. Higuchi, A. Tajima, H. Yabu, M. Shimomura, Soft Matter 2008, 4, 1302.
dc.identifier.citedreferenceH. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, H. Jinnai, ACS Appl. Mater. Interfaces 2013, 5, 3262.
dc.identifier.citedreferenceT. Higuchi, A. Tajima, K. Motoyoshi, H. Yabu, M. Shimomura, Angew. Chem., Int. Ed. 2009, 48, 5125.
dc.identifier.citedreferenceS. G. Jang, D. J. Audus, D. Klinger, D. V Krogstad, B. J. Kim, A. Cameron, S.‐W. Kim, K. T. Delaney, S.‐M. Hur, K. L. Killops, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, J. Am. Chem. Soc. 2013, 135, 6649.
dc.identifier.citedreferenceJ. M. Shin, Y. Kim, H. Yun, G.‐R. Yi, B. J. Kim, ACS Nano 2017, 11, 2133.
dc.identifier.citedreferenceW. Zhang, Z. Kochovski, Y. Lu, B. V. K. J. Schmidt, M. Antonietti, J. Yuan, ACS Nano 2016, 10, 7731.
dc.identifier.citedreferenceS.‐J. Jeon, G.‐R. Yi, C. M. Koo, S.‐M. Yang, Macromolecules 2007, 40, 8430.
dc.identifier.citedreferenceD. Klinger, M. J. Robb, J. M. Spruell, N. A. Lynd, C. J. Hawker, L. A. Connal, Polym. Chem. 2013, 4, 5038.
dc.identifier.citedreferenceM. Okubo, N. Saito, R. Takekoh, H. Kobayashi, Polymer 2005, 46, 1151.
dc.identifier.citedreferenceS. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557.
dc.identifier.citedreferenceÉ. Duguet, C. Hubert, C. Chomette, A. Perro, S. Ravaine, Comptes Rendus Chim. 2016, 19, 173.
dc.identifier.citedreferenceJ. Du, R. K. O’Reilly, Chem. Soc. Rev. 2011, 40, 2402.
dc.identifier.citedreferenceK. J. Lee, J. Yoon, J. Lahann, Curr. Opin. Colloid Interface Sci. 2011, 16, 195.
dc.identifier.citedreferenceA. Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194.
dc.identifier.citedreferenceD. J. Lunn, J. R. Finnegan, I. Manners, Chem. Sci. 2015, 6, 3663.
dc.identifier.citedreferenceS. Schoffelen, J. C. M. van Hest, Curr. Opin. Struct. Biol. 2013, 23, 613.
dc.identifier.citedreferenceA. Verma, O. Uzun, Y. Hu, Y. Hu, H.‐S. Han, N. Watson, S. Chen, D. J. Irvine, F. Stellacci, Nat. Mater. 2008, 7, 588.
dc.identifier.citedreferenceZ. Poon, S. Ch: en, A. C. Engler, H. Lee, E. Atas, G. von Maltzahn, S. N. Bhatia, P. T. Hammond, Angew. Chem., Int. Ed. 2010, 49, 7266.
dc.identifier.citedreferenceM. Massignani, C. LoPresti, A. Blanazs, J. Madsen, S. P. Armes, A. L. Lewis, G. Battaglia, Small 2009, 5, 2424.
dc.identifier.citedreferenceA. Akinc, G. Battaglia, Cold Spring Harbor Perspect. Biol. 2013, 5, a016980.
dc.identifier.citedreferenceR. Deng, F. Liang, W. Li, S. Liu, R. Liang, M. Cai, Z. Yang, J. Zhu, Small 2013, 9, 4099.
dc.identifier.citedreferenceT. Higuchi, A. Tajima, K. Motoyoshi, H. Yabu, M. Shimomura, Angew. Chem., Int. Ed. 2008, 47, 8044.
dc.identifier.citedreferenceH. Yabu, K. Motoyoshi, T. Higuchi, M. Shimomura, Phys. Chem. Chem. Phys. 2010, 12, 11944.
dc.identifier.citedreferenceM. J. Robb, L. A. Connal, B. F. Lee, N. A. Lynd, C. J. Hawker, Polym. Chem. 2012, 3, 1618.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.