Show simple item record

Bayesian placement of fossils on phylogenies using quantitative morphometric data

dc.contributor.authorParins‐fukuchi, Caroline
dc.date.accessioned2018-11-20T15:33:48Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationParins‐fukuchi, Caroline (2018). "Bayesian placement of fossils on phylogenies using quantitative morphometric data." Evolution 72(9): 1801-1814.
dc.identifier.issn0014-3820
dc.identifier.issn1558-5646
dc.identifier.urihttps://hdl.handle.net/2027.42/146387
dc.description.abstractJointly developing a comprehensive tree of life from living and fossil taxa has long been a fundamental goal in evolutionary biology. One major challenge has stemmed from difficulties in merging evidence from extant and extinct organisms. While these efforts have resulted in varying stages of synthesis, they have been hindered by their dependence on qualitative descriptions of morphology. Though rarely applied to phylogenetic inference, traditional and geometric morphometric data can improve these issues by generating more rigorous ways to quantify variation in morphological structures. They may also facilitate the rapid and objective aggregation of large morphological datasets. I describe a new Bayesian method that leverages quantitative trait data to reconstruct the positions of fossil taxa on fixed reference trees composed of extant taxa. Unlike most formulations of phylogenetic Brownian motion models, this method expresses branch lengths in units of morphological disparity, suggesting a new framework through which to construct Bayesian node calibration priors for molecular dating and explore comparative patterns in morphological disparity. I am hopeful that the approach described here will help to facilitate a deeper integration of neoâ and paleontological data to move morphological phylogenetics further into the genomic era.
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press
dc.subject.otherBayesian
dc.subject.othercontinuous traits
dc.subject.othermorphometrics
dc.subject.otherpaleobiology
dc.subject.otherphylogenetics
dc.titleBayesian placement of fossils on phylogenies using quantitative morphometric data
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146387/1/evo13516.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146387/2/evo13516-sup-0001-FigureS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146387/3/evo13516_am.pdf
dc.identifier.doi10.1111/evo.13516
dc.identifier.sourceEvolution
dc.identifier.citedreferenceScotland, R. W., R. G. Olmstead, and J. R. Bennett. 2003. Phylogeny reconstruction: the role of morphology. Syst. Biol. 52: 539 â 548.
dc.identifier.citedreferenceRevell, L. J., D. L. Mahler, R. G. Reynolds, and G. J. Slater. 2015. Placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny using continuous character data: a case study with the lizard anolis roosevelti. Evolution 69: 1027 â 1035.
dc.identifier.citedreferenceRonquist, F., S. Klopfstein, L. Vilhelmsen, S. Schulmeister, D. L. Murray, and A. P. Rasnitsyn. 2012. A totalâ evidence approach to dating with fossils, applied to the early radiation of the hymenoptera. Syst. Biol. 61: 973 â 999.
dc.identifier.citedreferenceRonquist, F., N. Lartillot, and M. J. Phillips. 2016. Closing the gap between rocks and clocks using totalâ evidence dating. Phil. Trans. R Soc. B 371: 20150136.
dc.identifier.citedreferenceSchraiber, J. G., Y. Mostovoy, T. Y. Hsu, and R. B. Brem. 2013. Inferring evolutionary histories of pathway regulation from transcriptional profiling data. PLoS Comp. Biol. 9: e1003255.
dc.identifier.citedreferenceScotland, R., and R. T. Pennington. 2000. Homology and systematics: coding characters for phylogenetic analysis. CRC Press, Boca Raton, Florida.
dc.identifier.citedreferenceSimões, T. R., M. W. Caldwell, A. Palci, and R. L. Nydam. 2017. Giant taxonâ character matrices: quality of character constructions remains critical regardless of size. Cladistics 33: 198 â 219.
dc.identifier.citedreferenceSlater, G. J., L. J. Harmon, and M. E. Alfaro. 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66: 3931 â 3944.
dc.identifier.citedreferenceSmith, U. E., and J. R. Hendricks. 2013. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Syst. Biol. 62: 366 â 385.
dc.identifier.citedreferenceSoltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F. Refulioâ Rodriguez, J. B. Walker, M. J. Moore, B. S. Carlsward, et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98: 704 â 730.
dc.identifier.citedreferenceSukumaran, J., and M. T. Holder. 2010. Dendropy: a python library for phylogenetic computing. Bioinformatics 26: 1569 â 1571.
dc.identifier.citedreferenceThiele, K. 1993. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9: 275 â 304.
dc.identifier.citedreferenceWiens, J. J. 2001. Character analysis in morphological phylogenetics: problems and solutions. Syst. Biol. 50: 689 â 699.
dc.identifier.citedreferenceWiens, J. J. 2009. Paleontology, genomics, and combinedâ data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Syst. Biol. 58: 87 â 99.
dc.identifier.citedreferenceWiens, J. J., C. A. Kuczynski, T. Townsend, T. W. Reeder, D. G. Mulcahy, and J. W. Sites. 2010. Combining phylogenomics and fossils in higherâ level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst. Biol. 59: 674 â 688.
dc.identifier.citedreferenceWilkinson, M. 1995. A comparison of two methods of character construction. Cladistics 11: 297 â 308.
dc.identifier.citedreferenceWright, A. M., and D. M. Hillis. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One 9: e109210.
dc.identifier.citedreferenceWright, A. M., G. T. Lloyd, and D. M. Hillis. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst. Biol. 65: 602 â 611.
dc.identifier.citedreferenceYang, Z. 2014. Molecular evolution: a statistical approach. Oxford Univ. Press, Oxford.
dc.identifier.citedreferenceZhang, C., T. Stadler, S. Klopfstein, T. A. Heath, and F. Ronquist. 2015. Totalâ evidence dating under the fossilized birthâ death process. Syst. Biol. 65: 228 â 249.
dc.identifier.citedreferenceAmson, E., and C. de Muizon. 2014. A new durophagous phocid (mammalia: Carnivora) from the late neogene of peru and considerations on monachine seals phylogeny. J. Syst. Palaeontol. 12: 523 â 548.
dc.identifier.citedreferenceBerger, S. A., and A. Stamatakis. 2010. Accuracy of morphologyâ based phylogenetic fossil placement under maximum likelihood. ACS/IEEE Int. Conf. Comp. Syst. Appl. 1â 9. https://doi.org/10.1109/AICCSA.2010.5586939
dc.identifier.citedreferenceBrazeau, M. D. 2011. Problematic character coding methods in morphology and their effects. Biol. J. Linnean Soc. 104: 489 â 498.
dc.identifier.citedreferenceButler, M. A., and A. A. King. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164: 683 â 695.
dc.identifier.citedreferenceCatalano, S. A., P. A. Goloboff, and N. P. Giannini. 2010. Phylogenetic morphometrics (i): the use of landmark data in a phylogenetic framework. Cladistics 26: 539 â 549.
dc.identifier.citedreferenceCavalliâ Sforza, L. L., and A. W. Edwards. 1967. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19: 233.
dc.identifier.citedreferenceChen, I. 2009. History of Vitaceae inferred from morphologyâ based phylogeny and the fossil record of seeds. University of Florida, Florida.
dc.identifier.citedreferenceFelsenstein, J. 1973. Maximumâ likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25: 471.
dc.identifier.citedreferenceFelsenstein, J. 1981a. Evolutionary trees from dna sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368 â 376.
dc.identifier.citedreferenceFelsenstein, J. 1981b. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35: 1229 â 1242.
dc.identifier.citedreferenceFelsenstein, J. 1988. Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19: 445 â 471.
dc.identifier.citedreferenceFelsenstein, J.. 2002. Quantitative characters, phylogenies, and morphometrics. Morphol. Shape Phylog. 64: 27 â 44.
dc.identifier.citedreferenceFreckleton, R. P. 2012. Fast likelihood calculations for comparative analyses. Methods Ecol. Evol. 3: 940 â 947.
dc.identifier.citedreferenceGoloboff, P. A., and S. A. Catalano. 2016. Tnt version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32: 221 â 238.
dc.identifier.citedreferenceGoloboff, P. A., C. I. Mattoni, and A. S. Quinteros. 2006. Continuous characters analyzed as such. Cladistics 22: 589 â 601.
dc.identifier.citedreferenceGonzálezâ José, R., I. Escapa, W. A. Neves, R. Cúneo, and H. M. Pucciarelli. 2008. Cladistic analysis of continuous modularized traits provides phylogenetic signals in homo evolution. Nature 453: 775.
dc.identifier.citedreferenceGuindon, S. 2018. Accounting for calibration uncertainty: Bayesian molecular dating as a doubly intractable problem. Syst. Biol. 67: 651 â 661.
dc.identifier.citedreferenceHastings, W. K. 1970. Monte carlo sampling methods using markov chains and their applications. Biometrika 57: 97 â 109.
dc.identifier.citedreferenceHauser, D. L., and W. Presch. 1991. The effect of ordered characters on phylogenetic reconstruction. Cladistics 7: 243 â 265.
dc.identifier.citedreferenceHawkins, J. A., C. E. Hughes, and R. W. Scotland. 1997. Primary homology assessment, characters and character states. Cladistics 13: 275 â 283.
dc.identifier.citedreferenceHöhna, S., M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P. Huelsenbeck, and F. Ronquist. 2016. Revbayes: Bayesian phylogenetic inference using graphical models and an interactive modelâ specification language. Syst. Biol. 65: 726 â 736.
dc.identifier.citedreferenceHuelsenbeck, J. P., and M. A. Suchard. 2007. A nonparametric method for accommodating and testing acrossâ site rate variation. Syst. Biol. 56: 975 â 987.
dc.identifier.citedreferenceJones, K. E., J. B. Smaers, and A. Goswami. 2015. Impact of the terrestrialâ aquatic transition on disparity and rates of evolution in the carnivoran skull. BMC Evol. Biol. 15: 8.
dc.identifier.citedreferenceKlingenberg, C. P. 2011. Morphoj: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11: 353 â 357.
dc.identifier.citedreferenceLandis, M. J., J. G. Schraiber, and M. Liang. 2013. Phylogenetic analysis using lévy processes: finding jumps in the evolution of continuous traits. Syst. Biol. 62: 193 â 204.
dc.identifier.citedreferenceLewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50: 913 â 925.
dc.identifier.citedreferenceMacLeod, N. 2001. The role of phylogeny in quantitative paleobiological data analysis. Paleobiology 27: 226 â 240.
dc.identifier.citedreferenceMacLeod, N. 2002. Phylogenetic signals in morphometric data. Morphol. Shape Phyl. 100: 138.
dc.identifier.citedreferenceMendes, F. K., J. A. Fuentesâ Gonzalez, J. G. Schraiber, and M. W. Hahn. 2018. Evolutionary inferences about quantitative traits are affected by underlying genealogical discordance. Elife. 7. pii: e36482. 276642.
dc.identifier.citedreferenceO’Meara, B. C., C. Ané, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60: 922 â 933.
dc.identifier.citedreferenceParinsâ Fukuchi, C. 2017. Use of continuous traits can improve morphological phylogenetics. Syst. Biol. 67: 328 â 339.
dc.identifier.citedreferencePleijel, F. 1995. On character coding for phylogeny reconstruction. Cladistics 11: 309 â 315.
dc.identifier.citedreferencePyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of lissamphibia. Syst. Biol. 60: 466 â 481.
dc.identifier.citedreferenceR Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceRae, T. C. 1998. The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14: 221 â 228.
dc.identifier.citedreferenceRannala, B., T. Zhu, and Z. Yang. 2011. Tail paradox, partial identifiability, and influential priors in bayesian branch length inference. Mol. Biol. Evol. 29: 325 â 335.
dc.identifier.citedreferenceRevell, L. J. 2012. Phytools: an r package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3: 217 â 223.
dc.identifier.citedreferenceRevell, L. J., L. J. Harmon, and D. C. Collar. 2008. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57: 591 â 601.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.