Show simple item record

A Comparative Study of the Proton Properties of Magnetospheric Substorms at Earth and Mercury in the Near Magnetotail

dc.contributor.authorSun, W. J.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorDewey, R. M.
dc.contributor.authorRaines, J. M.
dc.contributor.authorFu, S. Y.
dc.contributor.authorWei, Y.
dc.contributor.authorKarlsson, T.
dc.contributor.authorPoh, G. K.
dc.contributor.authorJia, X.
dc.contributor.authorGershman, D. J.
dc.contributor.authorZong, Q. G.
dc.contributor.authorWan, W. X.
dc.contributor.authorShi, Q. Q.
dc.contributor.authorPu, Z. Y.
dc.contributor.authorZhao, D.
dc.date.accessioned2018-11-20T15:33:54Z
dc.date.available2019-10-01T16:02:11Zen
dc.date.issued2018-08-28
dc.identifier.citationSun, W. J.; Slavin, J. A.; Dewey, R. M.; Raines, J. M.; Fu, S. Y.; Wei, Y.; Karlsson, T.; Poh, G. K.; Jia, X.; Gershman, D. J.; Zong, Q. G.; Wan, W. X.; Shi, Q. Q.; Pu, Z. Y.; Zhao, D. (2018). "A Comparative Study of the Proton Properties of Magnetospheric Substorms at Earth and Mercury in the Near Magnetotail." Geophysical Research Letters 45(16): 7933-7941.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/146391
dc.description.abstractThe variations of plasma sheet proton properties during magnetospheric substorms at Earth and Mercury are comparatively studied. This study utilizes kappa distributions to interpret proton properties at both planets. Proton number densities are found to be around an order of magnitude higher, temperatures several times smaller, and κ values broader at Mercury than at Earth. Protons become denser and cooler during the growth phase, and are depleted and heated after the dipolarizations in both magnetospheres. The changes of κ at Earth are generally small (<20%), indicating that spectrum‐preserving processes, like adiabatic betatron acceleration, play an important role there, while variations of κ at Mercury are large (>60%), indicating the importance of spectrum‐altering processes there, such as acceleration due to nonadiabatic cross‐tail particle motions and wave‐particle interactions. This comparative study reveals important intrinsic properties on the energization of protons in both magnetospheres.Plain Language SummaryEarth and Mercury are the only two planets possessing global intrinsic magnetic fields among the four inner planets, which are Mercury, Venus, Earth, and Mars, within the solar system. The interactions between the intrinsic magnetic fields and the continual flow of high‐speed solar wind from the Sun form similar magnetospheres at the two planets, although the scale of the magnetosphere is much smaller at Mercury than at Earth. Magnetospheric substorms, a result of solar wind–magnetosphere coupling, occur in both magnetospheres. Comparative study of a similar process between different planets is meaningful as it can help us in understanding the specific process further as well as help us in understanding the intrinsic properties of the magnetospheres. This research paper characterizes the proton properties of magnetospheric substorms of both planets, revealing that different mechanisms control the behavior of protons during the magnetospheric substorms of the two planets.Key PointsProton number densities are an order of magnitude higher, temperatures several times smaller, and κ values broader at Mercury than at EarthProtons become denser and cooler during the growth phase, and are depleted and heated after the substorm dipolarizations at both planetsκ changes are <20% at Earth, implying spectrum‐preserving accelerations, and >60% at Mercury, implying spectrum‐altering accelerations
dc.publisherWiley Periodicals, Inc.
dc.subject.otheradiabatic and nonadiabatic processes
dc.subject.otherproton heating
dc.subject.othermagnetospheric substorm
dc.subject.othercomparative planetary study
dc.subject.otherkappa distribution
dc.titleA Comparative Study of the Proton Properties of Magnetospheric Substorms at Earth and Mercury in the Near Magnetotail
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146391/1/grl57828.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146391/2/grl57828_am.pdf
dc.identifier.doi10.1029/2018GL079181
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRostoker, G., Akasofu, S.‐I., Foster, J., Greenwald, R., Kamide, Y., Kawasaki, K., et al. ( 1980 ). Magnetospheric substorms—Definition and signatures. Journal of Geophysical Research, 85 ( A4 ), 1663 – 1668. https://doi.org/10.1029/JA085iA04p01663
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 – 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceIp, W. H. ( 1987 ). Dynamics of electrons and heavy ions in Mercury’s magnetosphere. Icarus, 71 ( 3 ), 441 – 447. https://doi.org/10.1016/0019‐1035(87)90039‐X
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Raines, J. M., & DiBraccio, G. A. ( 2017 ). Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with MESSENGER. Journal of Geophysical Research: Space Physics, 122, 12,153 – 12,169. https://doi.org/10.1002/2017JA024594
dc.identifier.citedreferenceKistler, L. M., Mouikis, C. G., Cao, X., Frey, H., Klecker, B., Dandouras, I., et al. ( 2006 ). Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near‐earth neutral line. Journal of Geophysical Research, 111, A11222. https://doi.org/10.1029/2006JA011939
dc.identifier.citedreferenceLyons, L. R., & Speiser, T. W. ( 1982 ). Evidence for current sheet acceleration in the geomagnetic tail. Journal of Geophysical Research, 87 ( A4 ), 2276 – 2286. https://doi.org/10.1029/JA087iA04p02276
dc.identifier.citedreferenceMcFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., et al. ( 2008 ). The THEMIS ESA plasma instrument and in‐flight calibration. Space Science Reviews, 141 ( 1–4 ), 277 – 302. https://doi.org/10.1007/s11214‐008‐9440‐2
dc.identifier.citedreferenceNagai, T., Mukai, T., Yamamoto, T., Nishida, A., Kokubun, S., & Lepping, R. P. ( 1997 ). Plasma sheet pressure changes during the substorm growth phase. Geophysical Research Letters, 24 ( 8 ), 963 – 966. https://doi.org/10.1029/97GL00374
dc.identifier.citedreferenceNess, N. F. ( 1965 ). The Earth’s magnetic tail. Journal of Geophysical Research, 70 ( 13 ), 2989 – 3005. https://doi.org/10.1029/JZ070i013p02989
dc.identifier.citedreferenceNess, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., & Schatten, K. H. ( 1974 ). Magnetic field observations near mercury: Preliminary results from mariner 10. Science, 185 ( 4146 ), 151 – 160. https://doi.org/10.1126/science.185.4146.151
dc.identifier.citedreferencePierrard, V., & Lazar, M. ( 2010 ). Kappa distributions: Theory and applications in space plasmas. Solar Physics, 267 ( 1 ), 153 – 174. https://doi.org/10.1007/s11207‐010‐9640‐2
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W. J., et al. ( 2017a ). Mercury’s cross‐tail current sheet: Structure, X‐line location and stress balance. Geophysical Research Letters, 44, 678 – 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W. J., et al. ( 2017b ). Coupling between mercury and its nightside magnetosphere: Cross‐tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 – 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferenceRaines, J. M., DiBraccio, G. A., Cassidy, T. A., Delcourt, D. C., Fujimoto, M., Jia, X., et al. ( 2015 ). Plasma sources in planetary magnetospheres: Mercury. Space Science Reviews, 192 ( 1–4 ), 91 – 144, 144. https://doi.org/10.1007/s11214‐015‐0193‐4
dc.identifier.citedreferenceRong, Z. J., Ding, Y., Slavin, J. A., Zhong, J., Poh, G., Sun, W. J., et al. ( 2018 ). The magnetic field structure of Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 548 – 566. https://doi.org/10.1002/2017JA024923
dc.identifier.citedreferenceSchriver, D., Trávníček, P. M., Anderson, B. J., Ashour‐Abdalla, M., Baker, D. N., Benna, M., et al. ( 2011 ). Quasi‐trapped ion and electron populations at mercury. Geophysical Research Letters, 38, L23103. https://doi.org/10.1029/2011GL049629
dc.identifier.citedreferenceShizgal, B. D. ( 2007 ). Suprathermal particle distributions in space physics: Kappa distributions and entropy. Astrophysics and Space Science, 312 ( 3‐4 ), 227 – 237. https://doi.org/10.1007/s10509‐007‐9679‐1
dc.identifier.citedreferenceSiscoe, G. L., Ness, N. F., & Yeates, C. M. ( 1975 ). Substorms on mercury? Journal of Geophysical Research, 80 ( 31 ), 4359 – 4363. https://doi.org/10.1029/JA080i031p04359
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Board, S. A., et al. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., et al. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 – 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., et al. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., Krimigis, S. M., Acuña, M. H., Anderson, B. J., Baker, D. N., Koehn, P. L., et al. ( 2007 ). MESSENGER: Exploring Mercury’s magnetosphere. Space Science Reviews, 131 ( 1–4 ), 133 – 160. https://doi.org/10.1007/s1/214‐007‐9154‐x
dc.identifier.citedreferenceSolomon, S., McNutt, R. L. Jr., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1‐4 ), 3 – 39. https://doi.org/10.1007/%20s11214‐007‐9247‐6
dc.identifier.citedreferenceSpeiser, T. W. ( 1965 ). Particle trajectories in model current sheets: 1. Analytical solutions. Journal of Geophysical Research, 70 ( 17 ), 4219 – 4226. https://doi.org/10.1029/JZ070i017p04219
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 – 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Wei, Y., Yao, Z. H., Rong, Z. J., Zhou, X. Z., et al. ( 2017 ). Plasma sheet pressure variations in the near‐earth magnetotail during substorm growth phase: THEMIS observations. Journal of Geophysical Research: Space Physics, 122, 12,212 – 12,228. https://doi.org/10.1002/2017JA024603
dc.identifier.citedreferenceSun, W. J., Raines, J. M., Fu, S. Y., Slavin, J. A., Wei, Y., Poh, G. K., et al. ( 2017 ). MESSENGER observations of the energization and heating of protons in the near‐mercury magnetotail. Geophysical Research Letters, 44, 8149 – 8158. https://doi.org/10.1002/2017GL074276
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., Zong, Q.‐G., et al. ( 2015 ). MESSENGER observations of Alfvénic and compressional waves during Mercury’s substorms. Geophysical Research Letters, 42, 6189 – 6198. https://doi.org/10.1002/2015GL065452
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Zong, Q. G., Imber, S. M., et al. ( 2015 ). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophysical Research Letters, 42, 3692 – 3699. https://doi.org/10.1002/2015GL064052
dc.identifier.citedreferenceVasyliunas, V. M. ( 1968 ). A survey of low‐energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. Journal of Geophysical Research, 73 ( 9 ), 2839 – 2884. https://doi.org/10.1029/JA073i009p02839
dc.identifier.citedreferenceWilliams, D. J., Mitchell, D. G., Huang, C. Y., Frank, L. A., & Russell, C. T. ( 1990 ). Particle acceleration during substorm growth and onset. Geophysical Research Letters, 17 ( 5 ), 587 – 590. https://doi.org/10.1029/GL017i005p00587
dc.identifier.citedreferenceWing, S., Johnson, J. R., Newell, P. T., & Meng, C.‐I. ( 2005 ). Dawn‐dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. Journal of Geophysical Research, 110, A08205. https://doi.org/10.1029/2005JA011086
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., et al. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1‐4 ), 417 – 450. https://doi.org/10.1007/s11214‐007‐9246‐7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. ( 2011 ). The global magnetic field of mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., et al. ( 2007 ). The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1‐4 ), 523 – 556. https://doi.org/10.1007/s11214‐007‐9272‐5
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ). The THEMIS mission. Space Science Reviews, 141 ( 1–4 ), 5 – 34. https://doi.org/10.1007/s11214‐008‐9336‐1
dc.identifier.citedreferenceArtemyev, A. V., Angelopoulos, V., Runov, A., & Petrokovich, A. A. ( 2016 ). Properties of current sheet thinning at x  ~ −10 to −12 R E. Journal of Geophysical Research: Space Physics, 121, 6718 – 6731. https://doi.org/10.1002/2016JA022779
dc.identifier.citedreferenceAshour‐Abdalla, M., Berchem, J., Büchner, J., & Zelenyi, M. ( 1990 ). Chaotic scattering and acceleration of ions in the Earth’s magnetotail. Geophysical Research Letters, 17 ( 13 ), 2317 – 2320. https://doi.org/10.1029/GL017i013p02317
dc.identifier.citedreferenceAuster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., et al. ( 2008 ). The THEMIS fluxgate magnetometer. Space Science Reviews, 141 ( 1–4 ), 235 – 264. https://doi.org/10.1007/s11214‐008‐9365‐9
dc.identifier.citedreferenceBaker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., & McPherron, R. L. ( 1996 ). Neutral line model of substorms: Past results and present view. Journal of Geophysical Research, 101 ( A6 ), 12,975 – 13,010. https://doi.org/10.1029/95JA03753
dc.identifier.citedreferenceCatapano, F., Zimbardo, G., Perri, S., Greco, A., Delcourt, D., Retino, A., & Cohen, I. J. ( 2017 ). Charge proportional and weakly mass‐dependent acceleration of different ion species in the Earth’s magnetotail. Geophysical Research Letters, 44, 10,108 – 10,115. https://doi.org/10.1002/2017GL075092
dc.identifier.citedreferenceChriston, S. P., Williams, D. J., Mitchell, D. G., Huang, C. Y., & Frank, L. A. ( 1991 ). Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions. Journal of Geophysical Research, 96 ( A1 ), 1 – 22. https://doi.org/10.1029/90JA01633
dc.identifier.citedreferenceDelcourt, D. C., Leblanc, F., Seki, K., Terada, N., Moore, T. E., & Fok, M. C. ( 2007 ). Ion energization during substorms at mercury. Planetary and Space Science, 55 ( 11 ), 1502 – 1508. https://doi.org/10.1016/j.pss.2006.11.026
dc.identifier.citedreferenceDelcourt, D. C., Moore, T. E., & Fok, M.‐C. H. ( 2010 ). Ion dynamics during compression of Mercury’s magnetosphere. Annales de Geophysique, 28 ( 8 ), 1467 – 1474. https://doi.org/10.5194/angeo‐28‐1467‐2010
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170 – 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., et al. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42, 9666 – 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., et al. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 – 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., et al. ( 2014 ). Ion kinetic properties in Mercury’s pre‐midnight plasma sheet. Geophysical Research Letters, 41, 5740 – 5747. https://doi.org/10.1002/2014GL060468
dc.identifier.citedreferenceHaaland, S., Kronberg, E. A., Daly, P. W., Fränz, M., Degener, L., Georgescu, E., & Dandouras, I. ( 2010 ). Spectral characteristics of protons in the Earth’s plasmasheet: Statistical results from cluster CIS and RAPID. Annales de Geophysique, 28 ( 8 ), 1483 – 1498. https://doi.org/10.5194/angeo‐28‐1483‐2010
dc.identifier.citedreferenceHasegawa, A., Mima, K., & Duong‐van, M. ( 1985 ). Plasma distribution function in a superthermal radiation field. Physical Review Letters, 54 ( 24 ), 2608 – 2610. https://doi.org/10.1103/PhysRevLett.54.2608
dc.identifier.citedreferenceHones, E. W. Jr. ( 1977 ). Substorm processes in the magnetotail: Comments on ‘on hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotail’ by L. A. Frank, K. L. Ackerson, and R. P. Lepping. Journal of Geophysical Research, 82 ( 35 ), 5633 – 5640. https://doi.org/10.1029/JA082i035p05633
dc.identifier.citedreferenceHuang, C. Y., Frank, L. A., Rostoker, G., Fennell, J., & Mitchell, D. G. ( 1992 ). Nonadiabatic heating of the central plasma sheet at substorm onset. Journal of Geophysical Research, 97 ( A2 ), 1481 – 1495. https://doi.org/10.1029/91JA02517
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.