Show simple item record

Dynamic microRNA activity identifies therapeutic targets in trastuzumab‐resistant HER2+ breast cancer

dc.contributor.authorDecker, Joseph T.
dc.contributor.authorHall, Matthew S.
dc.contributor.authorBlaisdell, Rachel B.
dc.contributor.authorSchwark, Kallen
dc.contributor.authorJeruss, Jacqueline S.
dc.contributor.authorShea, Lonnie D.
dc.date.accessioned2018-11-20T15:33:55Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationDecker, Joseph T.; Hall, Matthew S.; Blaisdell, Rachel B.; Schwark, Kallen; Jeruss, Jacqueline S.; Shea, Lonnie D. (2018). "Dynamic microRNA activity identifies therapeutic targets in trastuzumab‐resistant HER2+ breast cancer." Biotechnology and Bioengineering 115(10): 2613-2623.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/146392
dc.description.abstractMicroRNAs (miRNAs) are implicated in numerous physiologic and pathologic processes, such as the development of resistance to chemotherapy. Determining the role of miRNAs in these processes is often accomplished through measuring miRNA abundance by polymerase chain reaction, sequencing, or microarrays. We have developed a system for the large‐scale monitoring of dynamic miRNA activity and have applied this system to identify the contribution miRNA activity to the development of trastuzumab resistance in a cell model of HER2+ breast cancer. MiRNA activity measurements identified significantly different activity levels between BT474 cells (HER2+ breast cancer) and BT474R cells (HER2+ breast cancer cells selected for resistance to trastuzumab). We created a library of 32 miRNA reporter constructs, which were delivered by lentiviral transduction into cells, and miRNA activity was quantified by bioluminescence imaging. Upon treatment with the bioimmune therapy, trastuzumab, the activity of 11 miRNAs were significantly altered in parental BT474 cells, and 20 miRNAs had significantly altered activity in the therapy‐resistant BT474R cell line. A combination of statistical, network and classification analysis was applied to the dynamic data, which identified miR‐21 as a controlling factor in trastuzumab response. Our data suggested downregulation of miR‐21 activity was associated with resistance, which was confirmed in an additional HER2+ breast cancer cell line, SKBR3. Collectively, the dynamic miRNA activity measurements and analysis provided a system to identify new potential therapeutic targets in treatment‐resistant cancers.MicroRNAs (miRNAs) are often dysrgulated in cancer and can give rise to drug resistance. Identifying the mechanisms for resistance may lead to new This work used an array of miRNA activity reporters to identify miR‐21 as a mediator of trastuzumab resistance in breast cancer.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherdrug resistance
dc.subject.othermicroRNA
dc.subject.othertrastuzumab
dc.subject.otherbreast cancer
dc.titleDynamic microRNA activity identifies therapeutic targets in trastuzumab‐resistant HER2+ breast cancer
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146392/1/bit26791.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146392/2/bit26791_am.pdf
dc.identifier.doi10.1002/bit.26791
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceSlamon, D. J., Leyland‐Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., … Norton, L. ( 2001 ). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344 ( 11 ), 783 – 792.
dc.identifier.citedreferenceMevik, B.‐H., & Wehrens, R. ( 2007 ). The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software, 18 ( 2 ), 1 – 24.
dc.identifier.citedreferenceMeyer, P. E., Kontos, K., Lafitte, F., & Bontempi, G. ( 2007 ). Information‐theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 2007, 8 – 8.
dc.identifier.citedreferenceMiyoshi, H., Blömer, U., Takahashi, M., Gage, F. H., & Verma, I. M. ( 1998 ). Development of a self‐inactivating lentivirus vector. Journal of Virology, 72 ( 10 ), 8150 – 8157.
dc.identifier.citedreferenceMüller, V., Gade, S., Steinbach, B., Loibl, S., von Minckwitz, G., Untch, M., … Schwarzenbach, H. ( 2014 ). Changes in serum levels of miR‐21, miR‐210, and miR‐373 in HER2‐positive breast cancer patients undergoing neoadjuvant therapy: A translational research project within the Geparquinto trial. Breast Cancer Research and Treatment, 147 ( 1 ), 61 – 68.
dc.identifier.citedreferenceMullokandov, G., Baccarini, A., Ruzo, A., Jayaprakash, A. D., Tung, N., Israelow, B., … Brown, B. D. ( 2012 ). High‐throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nature Methods, 9 ( 8 ), 840 – 846.
dc.identifier.citedreferenceNagata, Y., Lan, K.‐H., Zhou, X., Tan, M., Esteva, F. J., Sahin, A. A., … Yu, D. ( 2004 ). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 6 ( 2 ), 117 – 127.
dc.identifier.citedreferenceNahta, R., Yu, D., Hung, M.‐C., Hortobagyi, G. N., & Esteva, F. J. ( 2006 ). Mechanisms of disease: Understanding resistance to HER2‐targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3 ( 5 ), 269 – 280.
dc.identifier.citedreferenceNilsen, T. W. ( 2007 ). Mechanisms of microRNA‐mediated gene regulation in animal cells. Trends in Genetics, 23 ( 5 ), 243 – 249.
dc.identifier.citedreferenceNilsson, S., Möller, C., Jirström, K., Lee, A., Busch, S., Lamb, R., & Landberg, G. ( 2012 ). Downregulation of miR‐92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One, 7 ( 4 ), e36051.
dc.identifier.citedreferencePark, C., Koo, J.‐Y., Kim, S., Sohn, I., & Lee, J. W. ( 2008 ). Classification of gene functions using support vector machine for time‐course gene expression data. Computational Statistics & Data Analysis, 52 ( 5 ), 2578 – 2587.
dc.identifier.citedreferencePeñalver bernabé, B., Shin, S., Rios, P. D., Broadbelt, L. J., Shea, L. D., & Seidlits, S. K. ( 2016 ). Dynamic transcription factor activity networks in response to independently altered mechanical and adhesive microenvironmental cues. Integrative Biology, 8 ( 8 ), 844 – 860.
dc.identifier.citedreferencePereira, D. M., Rodrigues, P. M., Borralho, P. M., & Rodrigues, C. M. P. ( 2013 ). Delivering the promise of miRNA cancer therapeutics. Drug Discovery Today, 18 ( 5 ), 282 – 289.
dc.identifier.citedreferenceRobinson, S., Glonek, G., Koch, I., Thomas, M., & Davies, C. ( 2015 ). Alignment of time course gene expression data and the classification of developmentally driven genes with hidden Markov models. BMC Bioinformatics, 16 ( 1 ), 196.
dc.identifier.citedreferenceRohart, F., Gautier, B., Singh, A., & Lê cao, K.‐A. ( 2017 ). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Computational Biology, 13 ( 11 ), e1005752.
dc.identifier.citedreferenceRomond, E. H., Perez, E. A., Bryant, J., Suman, V. J., Geyer, C. E., Jr., Davidson, N. E., … Wolmark, N. ( 2005 ). Trastuzumab plus adjuvant chemotherapy for operable HER2‐positive breast cancer. New England Journal of Medicine, 353 ( 16 ), 1673 – 1684.
dc.identifier.citedreferenceScaltriti, M., Eichhorn, P. J., Cortés, J., Prudkin, L., Aura, C., Jiménez, J., … Baselga, J. ( 2011 ). Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 9 ), 3761 – 3766.
dc.identifier.citedreferenceShen, H., Zhu, F., Liu, J., Xu, T., Pei, D., Wang, R., … Shu, Y. ( 2014 ). Alteration in Mir‐21/PTEN expression modulates gefitinib resistance in non‐small cell lung cancer. PLoS One, 9 ( 7 ), e103305.
dc.identifier.citedreferenceSi, H., Sun, X., Chen, Y., Cao, Y., Chen, S., Wang, H., & Hu, C. ( 2013 ). Circulating microRNA‐92a and microRNA‐21 as novel minimally invasive biomarkers for primary breast cancer. Journal of Cancer Research and Clinical Oncology, 139 ( 2 ), 223 – 229.
dc.identifier.citedreferenceSiletz, A., Schnabel, M., Kniazeva, E., Schumacher, A. J., Shin, S., Jeruss, J. S., & Shea, L. D. ( 2013 ). Dynamic transcription factor networks in epithelial‐mesenchymal transition in breast cancer models. PLoS One, 8 ( 4 ), e57180.
dc.identifier.citedreferenceSmyth, G. K. ( 2005 ). Limma: Linear models for microarray data, Bioinformatics and computational biology solutions using R and Bioconductor ( 397 – 420 ). Springer
dc.identifier.citedreferenceTavazoie, S. F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., … Massagué, J. ( 2008 ). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451 ( 7175 ), 147 – 152.
dc.identifier.citedreferenceValabrega, G., Montemurro, F., & Aglietta, M. ( 2007 ). Trastuzumab: Mechanism of action, resistance and future perspectives in HER2‐overexpressing breast cancer. Annals of Oncology, 18 ( 6 ), 977 – 984.
dc.identifier.citedreferenceVolinia, S., Calin, G. A., Liu, C.‐G., Ambs, S., Cimmino, A., Petrocca, F., … Croce, C. M. ( 2006 ). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103 ( 7 ), 2257 – 2261.
dc.identifier.citedreferenceVu, T., & Claret, F. X. ( 2012 ). Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Frontiers in Oncology, 2, 62.
dc.identifier.citedreferenceWei, F., Liu, Y., Guo, Y., Xiang, A., Wang, G., Xue, X., & Lu, Z. ( 2013 ). MiR‐99b‐targeted mTOR induction contributes to irradiation resistance in pancreatic cancer. Molecular cancer, 12 ( 1 ), 81.
dc.identifier.citedreferenceWeiss, M. S., Peñalver bernabé, B., Shin, S., Asztalos, S., Dubbury, S. J., Mui, M. D., … Shea, L. D. ( 2014 ). Dynamic transcription factor activity and networks during ErbB2 breast oncogenesis and targeted therapy. Integrative Biology, 6 ( 12 ), 1170 – 1182.
dc.identifier.citedreferenceWellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., … Brabletz, T. ( 2009 ). The EMT‐activator ZEB1 promotes tumorigenicity by repressing stemness‐inhibiting microRNAs. Nature Cell Biology, 11 ( 12 ), 1487 – 1495.
dc.identifier.citedreferenceYan, L.‐X., Huang, X.‐F., Shao, Q., Huang, M.‐Y., Deng, L., Wu, Q.‐L., … Shao, J. Y. ( 2008 ). MicroRNA miR‐21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14 ( 11 ), 2348 – 2360.
dc.identifier.citedreferenceYang, S., Huang, C., Li, X., Yu, M., He, Y., & Li, J. ( 2013 ). MiR‐21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology, 306, 162 – 168.
dc.identifier.citedreferenceYe, X.‐M., Zhu, H.‐Y., Bai, W.‐D., Wang, T., Wang, L., Chen, Y., … Jia, L. T. ( 2014 ). Epigenetic silencing of miR‐375 induces trastuzumab resistance in HER2‐positive breast cancer by targeting IGF1R. BMC Cancer, 14 ( 1 ), 134.
dc.identifier.citedreferenceLu, J., Getz, G., Miska, E. A., Alvarez‐Saavedra, E., Lamb, J., Peck, D., … Golub, T. R. ( 2005 ). MicroRNA expression profiles classify human cancers. Nature, 435 ( 7043 ), 834 – 838.
dc.identifier.citedreferenceAntonucci, A., De Rosa, R., Giusti, A., & Cuzzolin, F. ( 2015 ). Robust classification of multivariate time series by imprecise hidden Markov models. International Journal of Approximate Reasoning, 56, 249 – 263.
dc.identifier.citedreferenceBar‐Joseph, Z., Gitter, A., & Simon, I. ( 2012 ). Studying and modelling dynamic biological processes using time‐series gene expression data. Nature Reviews Genetics, 13 ( 8 ), 552 – 564.
dc.identifier.citedreferenceBellis, A. D., Peňalver‐Bernabé, B., Weiss, M. S., Yarrington, M. E., Barbolina, M. V., Pannier, A. K., … Shea, L. D. ( 2011 ). Cellular arrays for large‐scale analysis of transcription factor activity. Biotechnology and Bioengineering, 108 ( 2 ), 395 – 403.
dc.identifier.citedreferenceBenjamini, Y., & Hochberg, Y. ( 1995 ). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, 289 – 300.
dc.identifier.citedreferenceBerns, K., Horlings, H. M., Hennessy, B. T., Madiredjo, M., Hijmans, E. M., Beelen, K., … Bernards, R. ( 2007 ). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 12 ( 4 ), 395 – 402.
dc.identifier.citedreferenceBurk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., & Brabletz, T. ( 2008 ). A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9 ( 6 ), 582 – 589.
dc.identifier.citedreferenceChang, C.‐J., Chao, C.‐H., Xia, W., Yang, J.‐Y., Xiong, Y., Li, C.‐W., … Hung, M. C. ( 2011 ). p53 regulates epithelial‐mesenchymal transition (EMT) and stem cell properties through modulating miRNAs. Nature Cell Biology, 13 ( 3 ), 317 – 323.
dc.identifier.citedreferenceCobleigh, M. A., Vogel, C. L., Tripathy, D., Robert, N. J., Scholl, S., Fehrenbacher, L., … Slamon, D. J. ( 1999 ). Multinational study of the efficacy and safety of humanized anti‐HER2 monoclonal antibody in women who have HER2‐overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology, 17 ( 9 ), 2639 – 2639.
dc.identifier.citedreferenceCsardi, G., & Nepusz, T. ( 2006 ). The igraph software package for complex network research. InterJournal, Complex Systems, 1695 ( 5 ), 1 – 9.
dc.identifier.citedreferenceDecker, J. T., Hobson, E. C., Zhang, Y., Shin, S., Thomas, A. L., Jeruss, J. S., … Shea, L. D. ( 2017 ). Systems analysis of dynamic transcription factor activity identifies targets for treatment in Olaparib resistant cancer cells. Biotechnology and Bioengineering, 114 ( 9 ), 2085 – 2095.
dc.identifier.citedreferenceDull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., & Naldini, L. ( 1998 ). A third‐generation lentivirus vector with a conditional packaging system. Journal of Virology, 72 ( 11 ), 8463 – 8471.
dc.identifier.citedreferenceFaith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., … Gardner, T. S. ( 2007 ). Large‐scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5 ( 1 ), e8.
dc.identifier.citedreferenceFilipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. ( 2008 ). Mechanisms of post‐transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9 ( 2 ), 102 – 114.
dc.identifier.citedreferenceGong, C., Yao, Y., Wang, Y., Liu, B., Wu, W., Chen, J., … Song, E. ( 2011 ). Up‐regulation of miR‐21 mediates resistance to trastuzumab therapy for breast cancer. Journal of Biological Chemistry, 286 ( 21 ), 19127 – 19137.
dc.identifier.citedreferenceGottesman, M. M. ( 2002 ). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53 ( 1 ), 615 – 627.
dc.identifier.citedreferenceHaury, A.‐C., Mordelet, F., Vera‐Licona, P., & Vert, J.‐P. ( 2012 ). TIGRESS: Trustful inference of gene regulation using stability selection. BMC Systems Biology, 6 ( 1 ), 1.
dc.identifier.citedreferenceHe, C., Dong, X., Zhai, B., Jiang, X., Dong, D., Li, B., … Sun, X. ( 2015 ). MiR‐21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget, 6 ( 30 ), 28867 – 28881.
dc.identifier.citedreferenceIorio, M. V., Ferracin, M., Liu, C.‐G., Veronese, A., Spizzo, R., Sabbioni, S., … Croce, C. M. ( 2005 ). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65 ( 16 ), 7065 – 7070.
dc.identifier.citedreferenceJonas, S., & Izaurralde, E. ( 2015 ). Towards a molecular understanding of microRNA‐mediated gene silencing. Nature Reviews Genetics, 16 ( 7 ), 421 – 433.
dc.identifier.citedreferenceJung, E. J., Santarpia, L., Kim, J., Esteva, F. J., Moretti, E., Buzdar, A. U., … Calin, G. A. ( 2012 ). Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer, 118 ( 10 ), 2603 – 2614.
dc.identifier.citedreferenceKang, J., Lee, S. Y., Lee, S. Y., Kim, Y. J., Park, J. Y., Kwon, S. J., … SON, J. W. ( 2012 ). MicroRNA‐99b acts as a tumor suppressor in non‐small cell lung cancer by directly targeting fibroblast growth factor receptor 3. Experimental and Therapeutic Medicine, 3 ( 1 ), 149 – 153.
dc.identifier.citedreferenceKozomara, A., & Griffiths‐Jones, S. ( 2013 ). MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42 ( D1 ), D68 – D73.
dc.identifier.citedreferenceLuo, Y., Wang, X., Niu, W., Wang, H., Wen, Q., Fan, S., … Zhou, M. ( 2017 ). Elevated microRNA‐125b levels predict a worse prognosis in HER2‐positive breast cancer patients. Oncology Letters, 13 ( 2 ), 867 – 874.
dc.identifier.citedreferenceMa, L., Teruya‐Feldstein, J., & Weinberg, R. A. ( 2007 ). Tumour invasion and metastasis initiated by microRNA‐10b in breast cancer. Nature, 449 ( 7163 ), 682 – 688.
dc.identifier.citedreferenceMargolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R., & Califano, A. ( 2006 ). ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7 ( Suppl. 1 ), S7.
dc.identifier.citedreferenceDe Mattos‐Arruda, L., Bottai, G., Nuciforo, P. G., Di Tommaso, L., Giovannetti, E., Peg, V., … Santarpia, L. ( 2015 ). MicroRNA‐21 links epithelial‐to‐mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2‐positive breast cancer patients. Oncotarget, 6 ( 35 ), 37269.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.