Show simple item record

Treatment data and technical process challenges for practical big data efforts in radiation oncology

dc.contributor.authorMayo, CS
dc.contributor.authorPhillips, M
dc.contributor.authorMcNutt, TR
dc.contributor.authorPalta, J
dc.contributor.authorDekker, A
dc.contributor.authorMiller, RC
dc.contributor.authorXiao, Y
dc.contributor.authorMoran, JM
dc.contributor.authorMatuszak, MM
dc.contributor.authorGabriel, P
dc.contributor.authorAyan, AS
dc.contributor.authorPrisciandaro, J
dc.contributor.authorThor, M
dc.contributor.authorDixit, N
dc.contributor.authorPopple, R
dc.contributor.authorKilloran, J
dc.contributor.authorKaleba, E
dc.contributor.authorKantor, M
dc.contributor.authorRuan, D
dc.contributor.authorKapoor, R
dc.contributor.authorKessler, ML
dc.contributor.authorLawrence, TS
dc.date.accessioned2018-11-20T15:33:56Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationMayo, CS; Phillips, M; McNutt, TR; Palta, J; Dekker, A; Miller, RC; Xiao, Y; Moran, JM; Matuszak, MM; Gabriel, P; Ayan, AS; Prisciandaro, J; Thor, M; Dixit, N; Popple, R; Killoran, J; Kaleba, E; Kantor, M; Ruan, D; Kapoor, R; Kessler, ML; Lawrence, TS (2018). "Treatment data and technical process challenges for practical big data efforts in radiation oncology." Medical Physics 45(10): e793-e810.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/146393
dc.publisherMorgan Kaufmann
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbig data
dc.subject.otherontology
dc.subject.otherstandardization
dc.subject.otherinformatics
dc.subject.othermachine learning
dc.titleTreatment data and technical process challenges for practical big data efforts in radiation oncology
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146393/1/mp13114_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146393/2/mp13114.pdf
dc.identifier.doi10.1002/mp.13114
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceBailis P, Hellerstein JM, Stonebraker M. Readings in Database Systems, 5th edn. Burlington, MA: Morgan Kaufmann. http://www.redbook.io/pdf/redbook-5th-edition.pdf
dc.identifier.citedreferenceKerns SL, Ostrer H, Rosenstein BS. Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov. 2014; 4: 155 – 165.
dc.identifier.citedreferenceStevens EA, Rodriguez CP. Genomic medicine and targeted therapy for solid tumors. J Surg Oncol. 2015; 111: 38 – 42.
dc.identifier.citedreferenceJaffee EM, Dang CV, Agus DB, et al. Future cancer research priorities in the USA: a lancet oncology commission. Lancet Oncol. 2017; 18: e653 – e706.
dc.identifier.citedreferenceShirts BH, Salama JS, Aronson SJ, et al. CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record. J Am Med Inform Assoc. 2015; 22: 1231 – 1242.
dc.identifier.citedreferenceParry C, Kent EE, Mariotto AB, et al. Cancer survivors: a booming population. Cancer Epidemiol Biomarkers Prev. 2011; 20: 1996 – 2005.
dc.identifier.citedreferenceOeffinger KC, Argenbright KE, Levitt GA, et al. Models of cancer survivorship health care: moving forward. Am Soc Clin Oncol Educ Book. 2014; 4: 205 – 213.
dc.identifier.citedreferenceWitt CM, Herman PM, Tunis S. Comparative effectiveness research in integrative oncology. JCNI. 2017; 52: Igx013.
dc.identifier.citedreferenceFiore LD, Lavori PW. Integrating randomized comparative effectiveness research with patient care. N Engl J Med. 2016; 74: 2152 – 2158.
dc.identifier.citedreferenceKalet AM, Gennari JH, Ford EC, Phillips MH. Bayesian network models for error detection in radiotherapy plans. Phys Med Biol. 2015; 60: 2735 – 2749.
dc.identifier.citedreferenceBentzen SM, Constine LS, Deasy JO, et al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. IJORBP. 2010; 76: S3 – S9.
dc.identifier.citedreferenceMayo CS, Matuszak MM, Schipper MJ, Jolly S, Hayman JA, Ten Haken RK. Big data in designing clinical trials: opportunities and challenges. Front Oncol. 2017; 7: 187.
dc.identifier.citedreferenceLuo Y, El Naqa I, McShan DL, et al. Unraveling biophysical interactions of radiation pneumonitis in non‐small‐cell lung cancer via Bayesian network analysis. Radiother Oncol. 2017; 123: 85 – 92.
dc.identifier.citedreferenceEl Naqa I, Kerns SL, Coates J, et al. Radiogenomics and radiotherapy response modeling. Phys Med Biol. 2017; 62: R179 – R206.
dc.identifier.citedreferenceLambin P, van Stiphout RGPM, Starmans MHW, et al. Predicting outcomes in radiation oncology–multifactorial decision support systems. Nat Rev Clin Oncol. 2013; 10: 27 – 40.
dc.identifier.citedreferenceMayo CS, Pisansky TM, Petersen IA, et al. Establishment of practice standards in nomenclature and prescription to enable construction of software and databases for knowledge‐based practice review. Pract Radiat Oncol. 2016; 6: e117 – e126.
dc.identifier.citedreferenceMatuszak M, Anderson C, Lee C, et al. An integrated application for radiation therapy treatment plan directives, management, and reporting (SU‐G‐TeP4‐06). Med.Phys. 2016; 43: 3686.
dc.identifier.citedreferenceEvans SB, Fraass BA, Berner P, et al. Standardizing dose prescriptions: an ASTRO white paper. Pract Radiat Oncol. 2016; 6: e369 – e381. https://doi.org/10.1016/j.prro.2016.08.007 Epub 2016 Aug 24 PubMed PMID: 27693224.
dc.identifier.citedreferencehttps://www.dicomstandard.org/; accessed 1/26/18.
dc.identifier.citedreferencehttp://www.hl7.org; accessed 1/26/18.
dc.identifier.citedreferencehttps://www.hl7.org/fhir/DSTU1/http.html; accessed 1/26/18.
dc.identifier.citedreferencehttps://ncit.nci.nih.gov/ncitbrowser/; accessed 1/26/18.
dc.identifier.citedreferenceBasch E, Deal AM, Kris MG, et al. Symptom monitoring with patient‐reported outcomes during routine cancer treatment: a randomized controlled trial. J Clin Oncol. 2016; 34: 557 – 565. https://doi.org/10.1200/JCO.2015.63.0830
dc.identifier.citedreferencehttps://www.hhs.gov/ohrp/international/ethical-codes-and-research-standards/index.html; accessed 1/26/18.
dc.identifier.citedreferenceMayo CS, Kessler ML, Eisbruch A, et al. The big data effort in radiation oncology: data mining or data farming? Adv Radiat Oncol. 2016; 1: 260 – 271.
dc.identifier.citedreferenceMayo CS, Moran JM, Bosch W, et al. AAPM TG‐263 standardizing nomenclatures in radiation oncology. IJORBP. 2018; 100: 1057 – 1066.
dc.identifier.citedreferencehttp://bioportal.bioontology.org/ontologies/ROO, accessed 2/30/2018
dc.identifier.citedreferencehttps://bioportal.bioontology.org/ontologies/DLORO, accessed 2/30/2018
dc.identifier.citedreferenceWang P, Kupelian P, Ruan D, et al. Implementation of a comprehensive radiation therapy registry: focus on feasibility and reliability. IJORBP. 2012; 83: S664.
dc.identifier.citedreferenceRobertson SP, Quon H, Kiess AP, et al. A data‐mining framework for large scale analysis of dose‐outcome relationships in a database of irradiated head and neck cancer patients. Med Phys. 2015; 42: 4329 – 4337.
dc.identifier.citedreferenceCaruthers D, Brame S, Palta JR, et al. Development and implementation of quality measures for the survey based performance assessment of radiation therapy in the VA. IJROBP. 2017; 99: E391 – E392.
dc.identifier.citedreferenceWaddle MR, Kaleem TA, Niazi S, et al. Cost of acute and follow up care in patients with pre‐existing psychiatric diagnoses undergoing radiation therapy. IJROBP. 2017; 99: 1231.
dc.identifier.citedreferencehttp://argonautwiki.hl7.org/index.php?title=Main_Page; accessed 1/26/18.
dc.identifier.citedreferencePhillips M, Halasz L. Radiation oncology needs to adopt a comprehensive standard for data transfer: the case for HL7 FHIR. Int J Radiat Oncol Biol Phys. 2017; 99: 1073 – 1075.
dc.identifier.citedreferenceSkripcak T, Belka C, Bosch W, Baumann M, et al. Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets. Radiother Oncol. 2014; 113: 303 – 309.
dc.identifier.citedreferenceNyholm T, Olsson C, Montelius A, et al. A national approach for automated collection of standardized and population‐based radiation therapy data in Sweden. Radiother Oncol. 2016; 119: 344 – 350.
dc.identifier.citedreferenceRoelofs E, Dekker A, Lambin P, et al. International data‐sharing for radiotherapy research: an open‐source based infrastructure for multicentric clinical data mining. Radiother Oncol. 2014; 110: 370 – 374.
dc.identifier.citedreferenceWilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding principles for scientific data management and stewardship. Nat Sci Data. 2016; 3: 160018.
dc.identifier.citedreferencehttps://ncip.nci.nih.gov/blog/face-new-tragedy-commons-remedy-better-metadata/; accessed 1/26/2018
dc.identifier.citedreferencehttps://ncip.nci.nih.gov/blog/towards-cancer-research-data-commons/
dc.identifier.citedreferenceGruber TR. A translation approach to portable ontology specifications. Knowl Acquis. 1993; 5: 199 – 220.
dc.identifier.citedreferencePan HY, Mazur LM, Martin NE, et al. Radiation oncology health information technology: is it working for or against us? Int J Radiat Oncol Biol Phys. 2017; 98: 259 – 262.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.