Mars Thermospheric Variability Revealed by MAVEN EUVM Solar Occultations: Structure at Aphelion and Perihelion and Response to EUV Forcing
dc.contributor.author | Thiemann, E. M. B. | |
dc.contributor.author | Eparvier, F. G. | |
dc.contributor.author | Bougher, S. W. | |
dc.contributor.author | Dominique, M. | |
dc.contributor.author | Andersson, L. | |
dc.contributor.author | Girazian, Z. | |
dc.contributor.author | Pilinski, M. D. | |
dc.contributor.author | Templeman, B. | |
dc.contributor.author | Jakosky, B. M. | |
dc.date.accessioned | 2018-11-20T15:34:12Z | |
dc.date.available | 2019-11-01T15:10:33Z | en |
dc.date.issued | 2018-09 | |
dc.identifier.citation | Thiemann, E. M. B.; Eparvier, F. G.; Bougher, S. W.; Dominique, M.; Andersson, L.; Girazian, Z.; Pilinski, M. D.; Templeman, B.; Jakosky, B. M. (2018). "Mars Thermospheric Variability Revealed by MAVEN EUVM Solar Occultations: Structure at Aphelion and Perihelion and Response to EUV Forcing." Journal of Geophysical Research: Planets 123(9): 2248-2269. | |
dc.identifier.issn | 2169-9097 | |
dc.identifier.issn | 2169-9100 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/146405 | |
dc.description.abstract | The Mars thermosphere holds clues to the evolution of the Martian climate and has practical implications for spacecraft visiting Mars, which often use it for aerobraking upon arrival, or for landers, which must pass through it. Nevertheless, it has been sparsely characterized, even when past accelerometer measurements and remote observations are taken into account. The Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter, which includes a number of instruments designed to characterize the thermosphere, has greatly expanded the available thermospheric observations. This paper presents new and unanticipated measurements of density and temperature profiles (120–200 km) derived from solar occultations using the MAVEN Extreme Ultraviolet (EUV) Monitor (EUVM). These new measurements complement and expand MAVEN’s intended thermospheric measurement capacity. In particular, because the local time is inherently fixed to the terminator, solar occultations are ideally suited for characterizing long‐term and latitudinal variability. Occultation measurements are made during approximately half of all orbits, resulting in thousands of new thermospheric profiles. The density retrieval method is presented in detail, including an uncertainty analysis. Altitude‐latitude maps of thermospheric density and temperature at perihelion and aphelion are presented, revealing structures that have not been previously observed. Tracers of atmospheric dynamics are also observed, including (1) a high altitude polar warming feature at intermediate latitudes, (2) cooler temperatures coinciding with increased gravity wave activity, and (3) an apparent thermostatic response to solar EUV heating during a solar rotation, which shows heating at high altitudes that is accompanied by cooling at lower altitudes.Plain Language SummarySolar extreme ultraviolet (EUV) radiation is the primary energy source for the thermosphere, the uppermost region of the Mars atmosphere. The Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter is equipped with the EUV Monitor (EUVM) to track how this region of the spectrum varies. Because EUV radiation is entirely absorbed in the thermosphere, it can be used to probe this region of the atmosphere when the Sun sets or rises over the horizon as viewed from MAVEN using the solar occultation technique. This study presents new temperature and density measurements of the Mars thermosphere made by EUVM solar occultations, which include the first observations of both expected and unexpected phenomena. This includes a warming trend at intermediate altitudes in the winter hemisphere and a cooling trend in the lower thermosphere in response to a relatively rapid increase in solar EUV radiation. These results will aid our understanding of how the Mars upper atmosphere has evolved over time and, in particular, how significant fractions of the atmosphere have been lost to space. Further, these results provide valuable data for mission planners to aid in orbit determination and entry into the atmosphere by landers, both manned or unmanned.Key PointsA high altitude polar warming feature is observed at intermediate northern latitudes near perihelionHeating and cooling above and below 150 km, respectively, is observed that coincides with 27‐day solar EUV variabilityThe mean temperature sensitivity to EUV forcing is found to be 45 ± 12 K·m2·mW−1 at the terminator, independent of dawn or dusk location | |
dc.publisher | Cambridge University Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | EUV irradiance | |
dc.subject.other | solar occultations | |
dc.subject.other | polar warming | |
dc.subject.other | Mars upper atmosphere | |
dc.subject.other | Mars thermosphere | |
dc.subject.other | vertical wind thermostat | |
dc.title | Mars Thermospheric Variability Revealed by MAVEN EUVM Solar Occultations: Structure at Aphelion and Perihelion and Response to EUV Forcing | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/146405/1/jgre20997.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/146405/2/jgre20997_am.pdf | |
dc.identifier.doi | 10.1029/2018JE005550 | |
dc.identifier.source | Journal of Geophysical Research: Planets | |
dc.identifier.citedreference | Powell, F. R. ( 1993 ). Care and feeding of soft X‐ray and extreme ultraviolet filters. In 24th Annual Boulder Damage Symposium Proceedings—Laser‐induced damage in optical materials: 1992 (Vol. 1848, pp. 503 – 516 ). Bellingham, WA: International Society for Optics and Photonics. | |
dc.identifier.citedreference | McClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., et al. ( 2015 ). The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Science Reviews, 195 ( 1–4 ), 75 – 124. https://doi.org/10.1007/s11214‐014‐0098‐7 | |
dc.identifier.citedreference | Medvedev, A. S., González‐Galindo, F., Yiğit, E., Feofilov, A. G., Forget, F., & Hartogh, P. ( 2015 ). Cooling of the Martian thermosphere by CO 2 radiation and gravity waves: An intercomparison study with two general circulation models. Journal of Geophysical Research: Planets, 120, 913 – 927. https://doi.org/10.1002/2015JE004802 | |
dc.identifier.citedreference | Medvedev, A. S., & Yiğit, E. ( 2012 ). Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophysical Research Letters, 39, L05201. https://doi.org/10.1029/2012GL050852 | |
dc.identifier.citedreference | Medvedev, A. S., Yiğit, E., Hartogh, P., & Becker, E. ( 2011 ). Influence of gravity waves on the Martian atmosphere: General circulation modeling. Journal of Geophysical Research, 116, E10004. https://doi.org/10.1029/2011JE003848 | |
dc.identifier.citedreference | Millour, E., Forget, F., Spiga, A., Navarro, T., Madeleine, J. B., Montabone, L., et al. ( 2015, September). The Mars Climate Database (MCD version 5.2). In European Planetary Science Congress 2015 (Vol. 10, pp. EPSC2015–438). EPSC. | |
dc.identifier.citedreference | Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., et al. ( 2015 ). Eight‐year climatology of dust optical depth on Mars. Icarus, 251, 65 – 95. https://doi.org/10.1016/j.icarus.2014.12.034 | |
dc.identifier.citedreference | Nier, A. O., & McElroy, M. B. ( 1977 ). Composition and structure of Mars’ upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2. Journal of Geophysical Research, 82 ( 28 ), 4341 – 4349. https://doi.org/10.1029/JS082i028p04341 | |
dc.identifier.citedreference | Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. ( 2002 ). NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107 ( A12 ), 1468. https://doi.org/10.1029/2002JA009430 | |
dc.identifier.citedreference | Roble, R. G., & Norton, R. B. ( 1972 ). Thermospheric molecular oxygen from solar extreme‐ultraviolet occultation measurements. Journal of Geophysical Research, 77 ( 19 ), 3524 – 3533. | |
dc.identifier.citedreference | Seaton, D. B., Berghmans, D., Nicula, B., Halain, J. P., De Groof, A., Thibert, T., et al. ( 2013 ). The SWAP EUV imaging telescope part I: Instrument overview and pre‐flight testing. Solar Physics, 286 ( 1 ), 43 – 65. https://doi.org/10.1007/s11207‐012‐0114‐6 | |
dc.identifier.citedreference | Snowden, D., Yelle, R. V., Cui, J., Wahlund, J. E., Edberg, N. J. T., & Ågren, K. ( 2013 ). The thermal structure of Titan’s upper atmosphere, I: Temperature profiles from Cassini INMS observations. Icarus, 226 ( 1 ), 552 – 582. https://doi.org/10.1016/j.icarus.2013.06.006 | |
dc.identifier.citedreference | Terada, N., Leblanc, F., Nakagawa, H., Medvedev, A. S., Yiğit, E., Kuroda, T., et al. ( 2017 ). Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 122, 2374 – 2397. https://doi.org/10.1002/2016JA023476 | |
dc.identifier.citedreference | Thiemann, E. M. ( 2016 ). Multi‐spectral sensor driven solar EUV irradiance models with improved spectro‐temporal resolution for space weather applications at Earth and Mars (Doctoral Dissertation, University of Colorado at Boulder). | |
dc.identifier.citedreference | Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. ( 2017 ). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122, 2748 – 2767. https://doi.org/10.1002/2016JA023512 | |
dc.identifier.citedreference | Thiemann, E. M. B., Dominique, M., Pilinski, M. D., & Eparvier, F. G. ( 2017 ). Vertical Thermospheric density profiles from EUV solar occultations made by PROBA2 LYRA for solar cycle 24. Space Weather, 15, 1649 – 1660. https://doi.org/10.1002/2017SW001719 | |
dc.identifier.citedreference | Thiemann, E. M. B., Eparvier, F. G., Andersson, L. A., Fowler, C. M., Peterson, W. K., Mahaffy, P. R., et al. ( 2015 ). Neutral density response to solar flares at Mars. Geophysical Research Letters, 42, 8986 – 8992. https://doi.org/10.1002/2015GL066334 | |
dc.identifier.citedreference | Thiemann, E. M. B., Eparvier, F. G., & Woods, T. N. ( 2017 ). A time dependent relation between EUV solar flare light‐curves from lines with differing formation temperatures. Journal of Space Weather and Space Climate, 7, A36. https://doi.org/10.1051/swsc/2017037 | |
dc.identifier.citedreference | Vadas, S. L., Liu, H. L., & Lieberman, R. S. ( 2014 ). Numerical modeling of the global changes to the thermosphere and ionosphere from the dissipation of gravity waves from deep convection. Journal of Geophysical Research: Space Physics, 119, 7762 – 7793. https://doi.org/10.1002/2014JA020280 | |
dc.identifier.citedreference | Withers, P. ( 2006 ). Mars global surveyor and Mars odyssey accelerometer observations of the Martian upper atmosphere during aerobraking. Geophysical Research Letters, 33, L02201. https://doi.org/10.1029/2005GL024447 | |
dc.identifier.citedreference | Woods, T. N., Hock, R., Eparvier, F., Jones, A. R., Chamberlin, P. C., Klimchuk, J. A., et al. ( 2011 ). New solar extreme‐ultraviolet irradiance observations during flares. The Astrophysical Journal, 739 ( 2 ), 59. https://doi.org/10.1088/0004‐637X/739/2/59 | |
dc.identifier.citedreference | Woods, T. N., Kopp, G., & Chamberlin, P. C. ( 2006 ). Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares. Journal of Geophysical Research, 111, A10S14. https://doi.org/10.1029/2005JA011507 | |
dc.identifier.citedreference | Woods, T. N., Rodgers, E., Bailey, S. M., Eparvier, F. G., & Ucker, G. ( 1999 ). TIMED solar EUV experiment: Pre‐flight calibration results for the XUV photometer system. In Proceedings of SPIE—The International Society for Optical Engineering (Vol. 3756, pp. 255 – 264 ). Denver, CO: SPIE. | |
dc.identifier.citedreference | Woods, T. N., Rottman, G., & Vest, R. ( 2005 ). XUV photometer system (XPS): Overview and calibrations. The Solar Radiation and Climate Experiment (SORCE), 345 – 374. https://doi.org/10.1007/0‐387‐37625‐9_16 | |
dc.identifier.citedreference | Yiğit, E., England, S. L., Liu, G., Medvedev, A. S., Mahaffy, P. R., Kuroda, T., & Jakosky, B. M. ( 2015 ). High‐altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophysical Research Letters, 42, 8993 – 9000. https://doi.org/10.1002/2015GL065307 | |
dc.identifier.citedreference | Yiğit, E., & Medvedev, A. S. ( 2009 ). Heating and cooling of the thermosphere by internal gravity waves. Geophysical Research Letters, 36, L14807. https://doi.org/10.1029/2009GL038507 | |
dc.identifier.citedreference | Yiğit, E., Medvedev, A. S., & Hartogh, P. ( 2015 ). Gravity waves and high‐altitude CO 2 ice cloud formation in the Martian atmosphere. Geophysical Research Letters, 42, 4294 – 4300. https://doi.org/10.1002/2015GL064275 | |
dc.identifier.citedreference | Zurek, R. W., Tolson, R. A., Bougher, S. W., Lugo, R. A., Baird, D. T., Bell, J. M., & Jakosky, B. M. ( 2017 ). Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research: Space Physics, 122, 3798 – 3814. https://doi.org/10.1002/2016JA023641 | |
dc.identifier.citedreference | Zurek, R. W., Tolson, R. H., Baird, D., Johnson, M. Z., & Bougher, S. W. ( 2015 ). Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization. Space Science Reviews, 195 ( 1–4 ), 303 – 317. https://doi.org/10.1007/s11214‐014‐0095‐x | |
dc.identifier.citedreference | Arp, U., Friedman, R., Furst, M. L., Makar, S., & Shaw, P. S. ( 2000 ). SURF III—An improved storage ring for radiometry. Metrologia, 37 ( 5 ), 357 – 360. https://doi.org/10.1088/0026‐1394/37/5/2 | |
dc.identifier.citedreference | Bell, J. M., Bougher, S. W., & Murphy, J. R. ( 2007 ). Vertical dust mixing and the interannual variations in the Mars thermosphere. Journal of Geophysical Research, 112, E12002. https://doi.org/10.1029/2006JE002856 | |
dc.identifier.citedreference | Bougher, S. W. ( 1995 ). Comparative thermospheres: Venus and Mars. Advances in Space Research, 15 ( 4 ), 21 – 45. https://doi.org/10.1016/0273‐1177(94)00062‐6 | |
dc.identifier.citedreference | Bougher, S. W., Bell, J. M., Murphy, J. R., Lopez‐Valverde, M. A., & Withers, P. G. ( 2006 ). Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions. Geophysical Research Letters, 33, L02203. https://doi.org/10.1029/2005GL024059 | |
dc.identifier.citedreference | Bougher, S. W., Brain, D. A., Fox, J. L., Gonzalez‐Galindo, F., Simon‐Wedlund, C., & Withers, P. G. ( 2017 ). Chapter 14: Upper atmosphere and ionosphere. In B. Haberle, M. Smith, T. Clancy, F. Forget, & R. Zurek (Eds.), The atmosphere and climate of Mars (Chap. 14, 433 pp.). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781107016187 | |
dc.identifier.citedreference | Bougher, S. W., Cravens, T. E., Grebowsky, J., & Luhmann, J. ( 2015 ). The aeronomy of Mars: Characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Science Reviews, 195 ( 1–4 ), 423 – 456. https://doi.org/10.1007/s11214‐014‐0053‐7 | |
dc.identifier.citedreference | Bougher, S. W., Engel, S., Roble, R. G., & Foster, B. ( 1999 ). Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox. Journal of Geophysical Research, 104 ( E7 ), 16,591 – 16,611. https://doi.org/10.1029/1998JE001019 | |
dc.identifier.citedreference | Bougher, S. W., Engel, S., Roble, R. G., & Foster, B. ( 2000 ). Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices. Journal of Geophysical Research, 105 ( E7 ), 17,669 – 17,692. https://doi.org/10.1029/1999JE001232 | |
dc.identifier.citedreference | Bougher, S. W., Jakosky, B., Halekas, J., Grebowsky, J., Luhmann, J., Mahaffy, P., et al. ( 2015 ). Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 350 ( 6261 ), aad0459. | |
dc.identifier.citedreference | Bougher, S. W., McDunn, T. M., Zoldak, K. A., & Forbes, J. M. ( 2009 ). Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophysical Research Letters, 36, L05201. https://doi.org/10.1029/2008GL036376 | |
dc.identifier.citedreference | Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., et al. ( 2015 ). Mars global ionosphere‐thermosphere model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311 – 342. https://doi.org/10.1002/2014JE004715 | |
dc.identifier.citedreference | Bougher, S. W., Roble, R. G., & Fuller‐Rowell, T. ( 2002 ). Simulations of the upper atmospheres of the terrestrial planets. In Atmospheres in the solar system: Comparative aeronomy (pp. 261 – 288 ). Washington, D.C.: American Geophysical Union. | |
dc.identifier.citedreference | Bougher, S. W., Roeten, K., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., et al. ( 2017 ). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122, 1296 – 1313. https://doi.org/10.1002/2016JA023454 | |
dc.identifier.citedreference | Elrod, M. K., Bougher, S., Bell, J., Mahaffy, P. R., Benna, M., Stone, S., et al. ( 2017 ). He bulge revealed: He and CO 2 diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS. Journal of Geophysical Research: Space Physics, 122, 2564 – 2573. https://doi.org/10.1002/2016JA023482 | |
dc.identifier.citedreference | Eparvier, F. G., Chamberlin, P. C., Woods, T. N., & Thiemann, E. M. B. ( 2015 ). The solar extreme ultraviolet monitor for MAVEN. Space Science Reviews, 195 ( 1–4 ), 293 – 301. https://doi.org/10.1007/s11214‐015‐0195‐2 | |
dc.identifier.citedreference | Evans, J. S., Stevens, M. H., Lumpe, J. D., Schneider, N. M., Stewart, A. I. F., Deighan, J., et al. ( 2015 ). Retrieval of CO 2 and N 2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 42, 9040 – 9049. https://doi.org/10.1002/2015GL065489 | |
dc.identifier.citedreference | Fjeldbo, G., Fjeldbo, W. C., & Eshleman, V. R. ( 1966 ). Models for the atmosphere of Mars based on the Mariner 4 occultation experiment. Journal of Geophysical Research, 71 ( 9 ), 2307 – 2316. https://doi.org/10.1029/JZ071i009p02307 | |
dc.identifier.citedreference | Forbes, J. M., Bruinsma, S., & Lemoine, F. G. ( 2006 ). Solar rotation effects on the thermospheres of Mars and Earth. Science, 312 ( 5778 ), 1366 – 1368. https://doi.org/10.1126/science.1126389 | |
dc.identifier.citedreference | Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. ( 1999 ). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104 ( E10 ), 24,155 – 24,175. https://doi.org/10.1029/1999JE001025 | |
dc.identifier.citedreference | Gallagher, J. W., Brion, C. E., Samson, J. A. R., & Langhoff, P. W. ( 1988 ). Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes. Journal of Physical and Chemical Reference Data, 17 ( 1 ), 9 – 153. https://doi.org/10.1063/1.555821 | |
dc.identifier.citedreference | González‐Galindo, F., Forget, F., López‐Valverde, M. A., & Angelats i Coll, M. ( 2009 ). A ground‐to‐exosphere Martian general circulation model: 2. Atmosphere during solstice conditions—Thermospheric polar warming. Journal of Geophysical Research, 114, E08004. https://doi.org/10.1029/2008JE003277 | |
dc.identifier.citedreference | González‐Galindo, F., Forget, F., López‐Valverde, M. A., Angelats i Coll, M., & Millour, E. ( 2009 ). A ground‐to‐exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 114, E08004. https://doi.org/10.1029/2008JE003277 | |
dc.identifier.citedreference | González‐Galindo, F., López‐Valverde, M. A., Angelats i Coll, M., & Forget, F. ( 2005 ). Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. Journal of Geophysical Research, 110, E09008. https://doi.org/10.1029/2004JE002312 | |
dc.identifier.citedreference | González‐Galindo, F., López‐Valverde, M. A., Forget, F., García‐Comas, M., Millour, E., & Montabone, L. ( 2015 ). Variability of the Martian thermosphere during eight Martian years as simulated by a ground‐to‐exosphere global circulation model. Journal of Geophysical Research: Planets, 120, 2020 – 2035. https://doi.org/10.1002/2015JE004925 | |
dc.identifier.citedreference | Gröller, H., Montmessin, F., Yelle, R. V., Lefèvre, F., Forget, F., Schneider, N. M., et al. ( 2018 ). MAVEN/IUVS stellar occultation measurements of Mars atmospheric structure and composition. Journal of Geophysical Research: Planets, 123, 1449 – 1483. https://doi.org/10.1029/2017JE005466 | |
dc.identifier.citedreference | Gröller, H., Yelle, R. V., Koskinen, T. T., Montmessin, F., Lacombe, G., Schneider, N. M., et al. ( 2015 ). Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophysical Research Letters, 42, 9064 – 9070. https://doi.org/10.1002/2015GL065294 | |
dc.identifier.citedreference | Gullikson, E. M., Korde, R., Canfield, L. R., & Vest, R. E. ( 1996 ). Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X‐ray regions. Journal of Electron Spectroscopy and Related Phenomena, 80, 313 – 316. https://doi.org/10.1016/0368‐2048(96)02983‐0 | |
dc.identifier.citedreference | Huebner, W. F., & Mukherjee, J. ( 2015 ). Photoionization and photodissociation rates in solar and blackbody radiation fields. Planetary and Space Science, 106, 11 – 45. https://doi.org/10.1016/j.pss.2014.11.022 | |
dc.identifier.citedreference | Huestis, D. L., & Berkowitz, J. ( 2011 ). Critical evaluation of the photoabsorption cross section of CO 2 from 0.125 to 201.6 nm at room temperature. Planetary Science, Advances in Geosciences, 25, 229 – 242. | |
dc.identifier.citedreference | Jain, S. K., Deighan, J., Schneider, N. M., Stewart, A. I. F., Evans, J. S., Thiemann, E. M. B., et al. ( 2018 ). Martian thermospheric response to an X8.2 Solar Flare on September 10, 2017 as seen by MAVEN/IUVS. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077731 | |
dc.identifier.citedreference | Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., et al. ( 2015 ). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 42, 9023 – 9030. https://doi.org/10.1002/2015GL065419 | |
dc.identifier.citedreference | Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. ( 2015 ). The Mars atmosphere and volatile evolution (MAVEN) mission. Space Science Reviews, 195 ( 1–4 ), 3 – 48. https://doi.org/10.1007/s11214‐015‐0139‐x | |
dc.identifier.citedreference | Keating, G. M., Bougher, S. W., Zurek, R. W., Tolson, R. H., Cancro, G. J., Noll, S. N., et al. ( 1998 ). The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor. Science, 279 ( 5357 ), 1672 – 1676. https://doi.org/10.1126/science.279.5357.1672 | |
dc.identifier.citedreference | Keller‐Rudek, H., Moortgat, G. K., Sander, R., & Sörensen, R. ( 2013 ). The MPI‐Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth System Science Data, 5 ( 2 ), 365 – 373. https://doi.org/10.5194/essd‐5‐365‐2013 | |
dc.identifier.citedreference | Lee, C. O., Hara, T., Halekas, J. S., Thiemann, E., Chamberlin, P., Eparvier, F., et al. ( 2017 ). MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 122, 2768 – 2794. https://doi.org/10.1002/2016JA023495 | |
dc.identifier.citedreference | Liu, G., England, S., Lillis, R. J., Mahaffy, P. R., Elrod, M., Benna, M., & Jakosky, B. ( 2017 ). Longitudinal structures in Mars’ upper atmosphere as observed by MAVEN/NGIMS. Journal of Geophysical Research: Space Physics, 122, 1258 – 1268. https://doi.org/10.1002/2016JA023455 | |
dc.identifier.citedreference | Lo, D. Y., Yelle, R. V., Schneider, N. M., Jain, S. K., Stewart, A. I. F., England, S. L., et al. ( 2015 ). Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS. Geophysical Research Letters, 42, 9057 – 9063. https://doi.org/10.1002/2015GL066268 | |
dc.identifier.citedreference | Madeleine, J. B., Forget, F., Millour, E., Montabone, L., & Wolff, M. J. ( 2011 ). Revisiting the radiative impact of dust on Mars using the LMD global climate model. Journal of Geophysical Research: Planets, 116, E11010. https://doi.org/10.1029/2011JE003855 | |
dc.identifier.citedreference | Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., & Jakosky, B. M. ( 2015 ). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 42, 8951 – 8957. https://doi.org/10.1002/2015GL065329 | |
dc.identifier.citedreference | Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., et al. ( 2015 ). The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Science Reviews, 195 ( 1–4 ), 49 – 73. https://doi.org/10.1007/s11214‐014‐0091‐1 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.