Show simple item record

Effect of cellular polyanion mimetics on tau peptide aggregation

dc.contributor.authorIsmail, Tania
dc.contributor.authorKanapathipillai, Mathumai
dc.date.accessioned2018-11-20T15:34:27Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationIsmail, Tania; Kanapathipillai, Mathumai (2018). "Effect of cellular polyanion mimetics on tau peptide aggregation." Journal of Peptide Science 24(11): n/a-n/a.
dc.identifier.issn1075-2617
dc.identifier.issn1099-1387
dc.identifier.urihttps://hdl.handle.net/2027.42/146415
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAlzheimer’s
dc.subject.otheraggregation
dc.subject.otherglycosaminoglycans
dc.subject.otherRNA
dc.subject.othertau peptide
dc.titleEffect of cellular polyanion mimetics on tau peptide aggregation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146415/1/psc3125.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146415/2/psc3125_am.pdf
dc.identifier.doi10.1002/psc.3125
dc.identifier.sourceJournal of Peptide Science
dc.identifier.citedreferenceZhao J, Huvent I, Lippens G, et al. Glycan determinants of heparin‐tau interaction. Biophys J. 2017; 112 ( 5 ): 921 ‐ 932.
dc.identifier.citedreferenceEvans LD, Wassmer T, Fraser G, et al. Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep. 2018; 22 ( 13 ): 3612 ‐ 3624.
dc.identifier.citedreferenceAvila J. Intracellular and extracellular tau. Front Neurosci. 2010; 4: 49.
dc.identifier.citedreferenceEschmann NA, Do TD, LaPointe NE, et al. Tau aggregation propensity engrained in its solution state. J Phys Chem B. 2015; 119 ( 45 ): 14421 ‐ 14432.
dc.identifier.citedreferenceNadimidla K, Ismail T, Kanapathipillai M. Tau peptides and tau mutant protein aggregation inhibition by cationic polyethyleneimine and polyarginine. Biopolymers. 2017; 107 ( 9 ).
dc.identifier.citedreferenceAriga T, Miyatake T, Yu RK. Role of proteoglycans and glycosaminoglycans in the pathogenesis of Alzheimer’s disease and related disorders: amyloidogenesis and therapeutic strategies—a review. J Neurosci Res. 2010; 88 ( 11 ): 2303 ‐ 2315.
dc.identifier.citedreferenceMcLaurin J, Franklin T, Zhang X, Deng J, Fraser PE. Interactions of Alzheimer amyloid‐beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem. 1999; 266 ( 3 ): 1101 ‐ 1110.
dc.identifier.citedreferenceGoedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA. Assembly of microtubule‐associated protein tau into Alzheimer‐like filaments induced by sulphated glycosaminoglycans. Nature. 1996; 383 ( 6600 ): 550 ‐ 553.
dc.identifier.citedreferencePaudel HK, Li W. Heparin‐induced conformational change in microtubule‐associated protein tau as detected by chemical cross‐linking and phosphopeptide mapping. J Biol Chem. 1999; 274 ( 12 ): 8029 ‐ 8038.
dc.identifier.citedreferenceRamachandran G, Udgaonkar JB. Understanding the kinetic roles of the inducer heparin and of rod‐like protofibrils during amyloid fibril formation by tau protein. J Biol Chem. 2011; 286 ( 45 ): 38948 ‐ 38959.
dc.identifier.citedreferenceLarini L, Gessel MM, LaPointe NE, et al. Initiation of assembly of tau(273‐284) and its DeltaK280 mutant: an experimental and computational study. Phys Chem Chem Phys. 2013; 15 ( 23 ): 8916 ‐ 8928.
dc.identifier.citedreferenceAguilera JJ, Zhang F, Beaudet JM, Linhardt RJ, Colon W. Divergent effect of glycosaminoglycans on the in vitro aggregation of serum amyloid a. Biochimie. 2014; 104: 70 ‐ 80.
dc.identifier.citedreferenceKizuka Y, Kitazume S, Taniguchi N. N‐glycan and Alzheimer’s disease. Biochim Biophys Acta. 2017; 1861 ( 10 ): 2447 ‐ 2454.
dc.identifier.citedreferenceArora A, Ha C, Park CB. Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett. 2004; 564 ( 1‐2 ): 121 ‐ 125.
dc.identifier.citedreferenceSchlachetzki JC, Saliba SW, Oliveira AC. Studying neurodegenerative diseases in culture models. Rev Bras Psiquiatr. 2013; 35 ( Suppl 2 ): S92 ‐ S100.
dc.identifier.citedreferenceGiacobini E, Gold G. Alzheimer disease therapy—moving from amyloid‐beta to tau. Nat Rev Neurol. 2013; 9 ( 12 ): 677 ‐ 686.
dc.identifier.citedreferenceWischik CM, Harrington CR, Storey JM. Tau‐aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol. 2014; 88 ( 4 ): 529 ‐ 539.
dc.identifier.citedreferenceAvila J, Jimenez JS, Sayas CL, et al. Tau structures. Front Aging Neurosci. 2016; 8: 262.
dc.identifier.citedreferenceIqbal K, Liu F, Gong CX, Grundke‐Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010; 7 ( 8 ): 656 ‐ 664.
dc.identifier.citedreferencevon Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta. 2005; 1739 ( 2‐3 ): 158 ‐ 166.
dc.identifier.citedreferenceMandelkow E, von Bergen M, Biernat J, Mandelkow EM. Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol. 2007; 17 ( 1 ): 83 ‐ 90.
dc.identifier.citedreferenceLi W, Lee VM. Characterization of two VQIXXK motifs for tau fibrillization in vitro. Biochemistry. 2006; 45 ( 51 ): 15692 ‐ 15701.
dc.identifier.citedreferenceGoux WJ, Kopplin L, Nguyen AD, et al. The formation of straight and twisted filaments from short tau peptides. J Biol Chem. 2004; 279 ( 26 ): 26868 ‐ 26875.
dc.identifier.citedreferenceGanguly P, Do TD, Larini L, et al. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J Phys Chem B. 2015; 119 ( 13 ): 4582 ‐ 4593.
dc.identifier.citedreferenceBoutajangout A, Wisniewski T. Tau‐based therapeutic approaches for Alzheimer’s disease—a mini‐review. Gerontology. 2014; 60 ( 5 ): 381 ‐ 385.
dc.identifier.citedreferenceBrunden KR, Ballatore C, Crowe A, Smith AB 3rd, Lee VM, Trojanowski JQ. Tau‐directed drug discovery for Alzheimer’s disease and related tauopathies: a focus on tau assembly inhibitors. Exp Neurol. 2010; 223 ( 2 ): 304 ‐ 310.
dc.identifier.citedreferenceMukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, Zweckstetter M. Sites of tau important for aggregation populate {beta}‐structure and bind to microtubules and polyanions. J Biol Chem. 2005; 280 ( 26 ): 24978 ‐ 24986.
dc.identifier.citedreferencePapy‐Garcia D, Christophe M, Huynh MB, et al. Glycosaminoglycans, protein aggregation and neurodegeneration. Curr Protein Pept Sci. 2011; 12 ( 3 ): 258 ‐ 268.
dc.identifier.citedreferenceKampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. RNA stimulates aggregation of microtubule‐associated protein tau into Alzheimer‐like paired helical filaments. FEBS Lett. 1996; 399 ( 3 ): 344 ‐ 349.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.