Show simple item record

Coupling Interface Constructions of MoS2/Fe5Ni4S8 Heterostructures for Efficient Electrochemical Water Splitting

dc.contributor.authorWu, Yi
dc.contributor.authorLi, Fan
dc.contributor.authorChen, Wenlong
dc.contributor.authorXiang, Qian
dc.contributor.authorMa, Yanling
dc.contributor.authorZhu, Hong
dc.contributor.authorTao, Peng
dc.contributor.authorSong, Chengyi
dc.contributor.authorShang, Wen
dc.contributor.authorDeng, Tao
dc.contributor.authorWu, Jianbo
dc.date.accessioned2018-11-20T15:34:35Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationWu, Yi; Li, Fan; Chen, Wenlong; Xiang, Qian; Ma, Yanling; Zhu, Hong; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Wu, Jianbo (2018). "Coupling Interface Constructions of MoS2/Fe5Ni4S8 Heterostructures for Efficient Electrochemical Water Splitting." Advanced Materials 30(38): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/146422
dc.description.abstractWater splitting is considered as a pollution‐free and efficient solution to produce hydrogen energy. Low‐cost and efficient electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are needed. Recently, chemical vapor deposition is used as an effective approach to gain high‐quality MoS2 nanosheets (NSs), which possess excellent performance for water splitting comparable to platinum. Herein, MoS2 NSs grown vertically on FeNi substrates are obtained with in situ growth of Fe5Ni4S8 (FNS) at the interface during the synthesis of MoS2. The synthesized MoS2/FNS/FeNi foam exhibits only 120 mV at 10 mA cm−2 for HER and exceptionally low overpotential of 204 mV to attain the same current density for OER. Density functional theory calculations further reveal that the constructed coupling interface between MoS2 and FNS facilitates the absorption of H atoms and OH groups, consequently enhancing the performances of HER and OER. Such impressive performances herald that the unique structure provides an approach for designing advanced electrocatalysts.Strong coupling interfaces of a vertical MoS2 array and in situ grown Fe5Ni4S8 are formed by chemical vapor deposition. The interfacial coupling of the MoS2 array on FeNi foam shows outstanding activity of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER): 120 mV @ 10 mA cm–2 for HER and 204 mV @ 10 mA cm–2 for OER.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherchemical vapor deposition
dc.subject.othercoupling interfaces
dc.subject.otherhydrogen evolution
dc.subject.otherin situ grown molybdenum disulfide nanosheets
dc.subject.otheroxygen evolution
dc.titleCoupling Interface Constructions of MoS2/Fe5Ni4S8 Heterostructures for Efficient Electrochemical Water Splitting
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146422/1/adma201803151_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146422/2/adma201803151-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146422/3/adma201803151.pdf
dc.identifier.doi10.1002/adma.201803151
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceW. Zhou, X.‐J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 2013, 6, 2921.
dc.identifier.citedreferenceY. Yang, H. Fei, G. Ruan, C. Xiang, J. M. Tour, Adv. Mater. 2014, 26, 8163.
dc.identifier.citedreferenceT. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
dc.identifier.citedreferenceC. Tsai, H. Li, S. Park, J. Park, H. S. Han, J. K. Norskov, X. Zheng, F. Abild‐Pedersen, Nat. Commun. 2017, 8, 15113.
dc.identifier.citedreferenceY. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, S. Jin, J. Am. Chem. Soc. 2016, 138, 7965.
dc.identifier.citedreferenceX. Zhang, Z. Lai, C. Tan, H. Zhang, Angew. Chem., Int. Ed. 2016, 55, 8816.
dc.identifier.citedreferenceF. M. Pesci, M. S. Sokolikova, C. Grotta, P. C. Sherrell, F. Reale, K. Sharda, N. Ni, P. Palczynski, C. Mattevi, ACS Catal. 2017, 7, 4990.
dc.identifier.citedreferenceX. Lu, Y. Lin, H. Dong, W. Dai, X. Chen, X. Qu, X. Zhang, Sci. Rep. 2017, 7, 42309.
dc.identifier.citedreferenceW. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 2013, 9, 140.
dc.identifier.citedreferenceD. Xiong, Q. Zhang, W. Li, J. Li, X. Fu, M. F. Cerqueira, P. Alpuim, L. Liu, Nanoscale 2017, 9, 2711.
dc.identifier.citedreferenceS. Deng, Y. Zhong, Y. Zeng, Y. Wang, Z. Yao, F. Yang, S. Lin, X. Wang, X. Lu, X. Xia, J. Tu, Adv. Mater. 2017, 29, 1700748.
dc.identifier.citedreferenceH. Yu, Z. Yang, L. Du, J. Zhang, J. Shi, W. Chen, P. Chen, M. Liao, J. Zhao, J. Meng, G. Wang, J. Zhu, R. Yang, D. Shi, L. Gu, G. Zhang, Small 2017, 13, 1603005.
dc.identifier.citedreferenceX. Yang, Q. Li, G. Hu, Z. Wang, Z. Yang, X. Liu, M. Dong, C. Pan, Sci. China Mater. 2016, 59, 182.
dc.identifier.citedreferenceY. Xie, Z. Wang, Y. Zhan, P. Zhang, R. Wu, T. Jiang, S. Wu, H. Wang, Y. Zhao, T. Nan, X. Ma, Nanotechnology 2017, 28, 084001.
dc.identifier.citedreferenceP. Taheri, J. Wang, H. Xing, J. F. Destino, M. M. Arik, C. Zhao, K. Kang, B. Blizzard, L. Zhang, P. Zhao, S. Huang, S. Yang, F. V. Bright, J. Cerne, H. Zeng, Mater. Res. Express 2016, 3, 075009.
dc.identifier.citedreferenceY. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao, S. Wang, Angew. Chem., Int. Ed. 2017, 56, 5867.
dc.identifier.citedreferenceB. Zhang, Y. H. Lui, L. Zhou, X. Tang, S. Hu, J. Mater. Chem. A 2017, 5, 13329.
dc.identifier.citedreferenceM. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, J. Am. Chem. Soc. 2014, 136, 7077.
dc.identifier.citedreferenceM. A. Oliver‐Tolentino, J. Vázquez‐Samperio, A. Manzo‐Robledo, R. d. G. González‐Huerta, J. L. Flores‐Moreno, D. Ramírez‐Rosales, A. Guzmán‐Vargas, J. Phys. Chem. C 2014, 118, 22432.
dc.identifier.citedreferenceZ. Xing, X. Yang, A. M. Asiri, X. Sun, ACS Appl. Mater. Interfaces 2016, 8, 14521.
dc.identifier.citedreferenceY. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, K. H. Wei, L. J. Li, Adv. Mater. 2013, 25, 756.
dc.identifier.citedreferenceT. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441.
dc.identifier.citedreferenceD. Voiry, R. Fullon, J. Yang, E. S. C. de Carvalho Castro, R. Kappera, I. Bozkurt, D. Kaplan, M. J. Lagos, P. E. Batson, G. Gupta, A. D. Mohite, L. Dong, D. Er, V. B. Shenoy, T. Asefa, M. Chhowalla, Nat. Mater. 2016, 15, 1003.
dc.identifier.citedreferenceT. Shinagawa, A. T. Garcia‐Esparza, K. Takanabe, Sci. Rep. 2015, 5, 13801.
dc.identifier.citedreferenceP. A. DeSario, C. N. Chervin, E. S. Nelson, M. B. Sassin, D. R. Rolison, ACS Appl. Mater. Interfaces 2017, 9, 2387.
dc.identifier.citedreferenceU. Y. Qazi, C. Z. Yuan, N. Ullah, Y. F. Jiang, M. Imran, A. Zeb, S. J. Zhao, R. Javaid, A. W. Xu, ACS Appl. Mater. Interfaces 2017, 9, 28627.
dc.identifier.citedreferenceF. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater. 2017, 29, 1606570.
dc.identifier.citedreferenceW. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, ACS Nano 2015, 9, 1977.
dc.identifier.citedreferenceX. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, Angew. Chem., Int. Ed. 2014, 53, 7584.
dc.identifier.citedreferenceJ. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, M. Gratzel, Science 2014, 345, 1593.
dc.identifier.citedreferenceS. Chen, S. S. Thind, A. Chen, Electrochem. Commun. 2016, 63, 10.
dc.identifier.citedreferenceJ. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem., Int. Ed. 2016, 55, 6702.
dc.identifier.citedreferenceP. F. Liu, S. Yang, B. Zhang, H. G. Yang, ACS Appl. Mater. Interfaces 2016, 8, 34474.
dc.identifier.citedreferenceH. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc. 2015, 137, 2688.
dc.identifier.citedreferenceW. Wang, X. Xu, W. Zhou, Z. Shao, Adv. Sci. 2017, 4, 1600371.
dc.identifier.citedreferenceS. A. Grigoriev, P. Millet, V. N. Fateev, J. Power Sources 2008, 177, 281.
dc.identifier.citedreferenceC. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225.
dc.identifier.citedreferenceH. Li, Y. Li, A. Aljarb, Y. Shi, L. J. Li, Chem. Rev. 2018, 118, 6134.
dc.identifier.citedreferenceS. Li, S. Wang, M. M. Salamone, A. W. Robertson, S. Nayak, H. Kim, S. C. E. Tsang, M. Pasta, J. H. Warner, ACS Catal. 2016, 7, 877.
dc.identifier.citedreferenceQ. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 2016, 28, 1917.
dc.identifier.citedreferenceJ. Deng, H. Li, S. Wang, D. Ding, M. Chen, C. Liu, Z. Tian, K. S. Novoselov, C. Ma, D. Deng, X. Bao, Nat. Commun. 2017, 8, 14430.
dc.identifier.citedreferenceY. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.