Show simple item record

Construction of a recombinant rhinovirus accommodating fluorescent marker expression

dc.contributor.authorHan, Mingyuan
dc.contributor.authorRajput, Charu
dc.contributor.authorHinde, Joanna L.
dc.contributor.authorWu, Qian
dc.contributor.authorLei, Jing
dc.contributor.authorIshikawa, Tomoko
dc.contributor.authorBentley, J. Kelley
dc.contributor.authorHershenson, Marc B.
dc.date.accessioned2018-11-20T15:34:43Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationHan, Mingyuan; Rajput, Charu; Hinde, Joanna L.; Wu, Qian; Lei, Jing; Ishikawa, Tomoko; Bentley, J. Kelley; Hershenson, Marc B. (2018). "Construction of a recombinant rhinovirus accommodating fluorescent marker expression." Influenza and Other Respiratory Viruses 12(6): 717-727.
dc.identifier.issn1750-2640
dc.identifier.issn1750-2659
dc.identifier.urihttps://hdl.handle.net/2027.42/146429
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfluorescent tag
dc.subject.otherPicornavirus
dc.subject.otherreverse genetics
dc.subject.otherrhinovirus
dc.subject.otheriLOV
dc.titleConstruction of a recombinant rhinovirus accommodating fluorescent marker expression
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146429/1/irv12602.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146429/2/irv12602_am.pdf
dc.identifier.doi10.1111/irv.12602
dc.identifier.sourceInfluenza and Other Respiratory Viruses
dc.identifier.citedreferenceGadea G, Bos S, Krejbich‐Trotot P, et al. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology. 2016; 497: 157 ‐ 162.
dc.identifier.citedreferenceSchibler M, Piuz I, Hao WD, et al. Chimeric rhinoviruses obtained via genetic engineering or artificially induced recombination are viable only if the polyprotein coding sequence derives from the same species. J Virol. 2015; 89: 4470 ‐ 4480.
dc.identifier.citedreferenceChapman S, Faulkner C, Kaiserli E, et al. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci USA. 2008; 105: 20038 ‐ 20043.
dc.identifier.citedreferenceQuiner CA, Jackson WT. Fragmentation of the Golgi apparatus provides replication membranes for human rhinovirus 1A. Virology. 2010; 407: 185 ‐ 195.
dc.identifier.citedreferenceMartin S, Casasnovas JM, Staunton DE, et al. Efficient neutralization and disruption of rhinovirus by chimeric ICAM‐1/immunoglobulin molecules. J Virol. 1993; 67: 3561 ‐ 3568.
dc.identifier.citedreferenceContoli M, Message SD, Laza‐Stanca V, et al. Role of deficient type III interferon‐lambda production in asthma exacerbations. Nat Med. 2006; 12: 1023 ‐ 1026.
dc.identifier.citedreferenceSuzuki T, Yamaya M, Sekizawa K, et al. Bafilomycin A(1) inhibits rhinovirus infection in human airway epithelium: effects on endosome and ICAM‐1. Am J Physiol Lung Cell Mol Physiol. 2001; 280: L1115 ‐ L1127.
dc.identifier.citedreferenceHöfling K, Tracy S, Chapman N, et al. Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J Virol. 2000; 74: 4570 ‐ 4578.
dc.identifier.citedreferenceChapman NM, Kim K‐S, Tracy S, et al. Coxsackievirus expression of the murine secretory protein interleukin‐4 induces increased synthesis of immunoglobulin G1 in mice. J Virol. 2000; 74: 7952 ‐ 7962.
dc.identifier.citedreferenceChung Y, Hong JY, Lei J, et al. Rhinovirus infection induces IL‐13 production from CD11b‐positive, M2‐polarized exudative macrophages. Am J Respir Cell Mol Biol. 2015; 52: 205 ‐ 216.
dc.identifier.citedreferencePan W, Dong Z, Li F, et al. Visualizing influenza virus infection in living mice. Nat Commun. 2013; 4: 2369.
dc.identifier.citedreferencePierson TC, Diamond MS, Ahmed AA, et al. An infectious West Nile virus that expresses a GFP reporter gene. Virology. 2005; 334: 28 ‐ 40.
dc.identifier.citedreferenceLemon K, Nguyen DT, Ludlow M, et al. Recombinant subgroup B human respiratory syncytial virus expressing enhanced green fluorescent protein efficiently replicates in primary human cells and is virulent in cotton rats. J Virol. 2015; 89: 2849 ‐ 2856.
dc.identifier.citedreferenceDas Sarma J, Scheen E, Seo SH, et al. Enhanced green fluorescent protein expression may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system. J Neurovirol. 2002; 8: 381 ‐ 391.
dc.identifier.citedreferencePei YL, Hodgins DC, Wu JQ, et al. Porcine reproductive and respiratory syndrome virus as a vector: Immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs. Virology. 2009; 389: 91 ‐ 99.
dc.identifier.citedreferenceMueller S, Wimmer E. Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J Virol. 1998; 72: 20 ‐ 31.
dc.identifier.citedreferenceSeago J, Juleff N, Moffat K, et al. An infectious recombinant foot‐and‐mouth disease virus expressing a fluorescent marker protein. J Gen Virol. 2013; 94: 1517 ‐ 1527.
dc.identifier.citedreferenceTeterina NL, Pinto Y, Weaver JD, et al. Analysis of poliovirus protein 3A interactions with viral and cellular proteins in infected cells. J Virol. 2011; 85: 4284 ‐ 4296.
dc.identifier.citedreferenceBuckley AM, Petersen J, Roe AJ, et al. LOV‐based reporters for fluorescence imaging. Curr Opin Chem Biol. 2015; 27: 39 ‐ 45.
dc.identifier.citedreferencevan den Wollenberg DJM, Dautzenberg IJC, Ros W, et al. Replicating reoviruses with a transgene replacing the codons for the head domain of the viral spike. Gene Ther. 2015; 22: 267 ‐ 279.
dc.identifier.citedreferenceLaza‐Stanca V, Stanciu LA, Message SD, et al. Rhinovirus replication in human macrophages induces NF‐{kappa}B‐dependent tumor necrosis factor alpha production. J Virol. 2006; 80: 8248 ‐ 8258.
dc.identifier.citedreferenceZhou X, Zhu LX, Lizarraga R, et al. Human airway epithelial cells direct significant rhinovirus replication in monocytic cells by enhancing ICAM1 expression. Am J Respir Cell Mol Biol. 2017; 57: 216 ‐ 225.
dc.identifier.citedreferenceHellen CU, Lee CK, Wimmer E. Determinants of substrate recognition by poliovirus 2A proteinase. J Virol. 1992; 66: 3330 ‐ 3338.
dc.identifier.citedreferenceSousa C, Schmid EM, Skern T. Defining residues involved in human rhinovirus 2A proteinase substrate recognition. FEBS Lett. 2006; 580: 5713 ‐ 5717.
dc.identifier.citedreferenceDeng C, Li X, Liu S, et al. Development and characterization of a clinical strain of Coxsackievirus A16 and an eGFP infectious clone. Virol Sin. 2015; 30: 269 ‐ 276.
dc.identifier.citedreferenceMakela MJ, Puhakka T, Ruuskanen O, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol. 1998; 36: 539 ‐ 542.
dc.identifier.citedreferenceNicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993; 307: 982 ‐ 986.
dc.identifier.citedreferenceJohnston SL, Pattemore PK, Sanderson G, et al. Community study of role of viral infections in exacerbations of asthma in 9‐11 year old children. BMJ. 1995; 310: 1225 ‐ 1229.
dc.identifier.citedreferenceLee WM, Kiesner C, Pappas T, et al. A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants. PLoS ONE. 2007; 2: e966.
dc.identifier.citedreferenceLamson D, Renwick N, Kapoor V, et al. MassTag polymerase‐chain‐reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza‐like illness in New York State during 2004‐2005. J Infect Dis. 2006; 194: 1398 ‐ 1402.
dc.identifier.citedreferencePalmenberg AC, Spiro D, Kuzmickas R, et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science. 2009; 324: 55 ‐ 59.
dc.identifier.citedreferenceConant RM, Hamparian VV. Rhinoviruses: basis for a numbering system. II. Serologic characterization of prototype strains. J Immunol. 1968; 100: 114 ‐ 119.
dc.identifier.citedreferencePalmenberg AC, Rathe JA, Liggett SB. Analysis of the complete genome sequences of human rhinovirus. J Allergy Clin Immunol. 2010; 125: 1190 ‐ 1199.
dc.identifier.citedreferenceMosser AG, Vrtis R, Burchell L, et al. Quantitative and qualitative analysis of rhinovirus infection in bronchial tissues. Am J Respir Crit Care Med. 2005; 171: 645 ‐ 651.
dc.identifier.citedreferencePapadopoulos NG, Bates PJ, Bardin PG, et al. Rhinoviruses infect the lower airways. J Infect Dis. 2000; 181: 1875 ‐ 1884.
dc.identifier.citedreferenceNewcomb DC, Sajjan US, Nagarkar DR, et al. Human rhinovirus 1B exposure induces phosphatidylinositol 3‐kinase‐dependent airway inflammation in mice. Am J Respir Crit Care Med. 2008; 177: 1111 ‐ 1121.
dc.identifier.citedreferenceBartlett NW, Walton RP, Edwards MR, et al. Mouse models of rhinovirus‐induced disease and exacerbation of allergic airway inflammation. Nat Med. 2008; 14: 199 ‐ 204.
dc.identifier.citedreferenceNagarkar DR, Bowman ER, Schneider D, et al. Rhinovirus infection of allergen‐sensitized and ‐challenged mice induces eotaxin release from functionally polarized macrophages. J. Immunol. 2010; 185: 2525 ‐ 2535.
dc.identifier.citedreferenceBentley JK, Sajjan US, Dzaman MB, et al. Rhinovirus colocalizes with CD68‐ and CD11b‐positive macrophages following experimental infection in humans. J Allergy Clin Immunol. 2013; 132 ( 758–61 ): e3.
dc.identifier.citedreferenceMosser AG, Brockman‐Schneider R, Amineva S, et al. Similar frequency of rhinovirus‐infectible cells in upper and lower airway epithelium. J Infect Dis. 2002; 185: 734 ‐ 743.
dc.identifier.citedreferenceHadfield AT, Lee WM, Zhao R, et al. The refined structure of human rhinovirus 16 at 2.15 angstrom resolution: implications for the viral life cycle. Structure. 1997; 5: 427 ‐ 441.
dc.identifier.citedreferenceLee WM, Monroe SS, Rueckert RR. Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol. 1993; 67: 2110 ‐ 2122.
dc.identifier.citedreferenceStanway G, Hughes PJ, Mountford RC, et al. The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res. 1984; 12: 7859 ‐ 7875.
dc.identifier.citedreferenceCordingley MG, Callahan PL, Sardana VV, et al. Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro. J Biol Chem. 1990; 265: 9062 ‐ 9065.
dc.identifier.citedreferenceToyoda H, Nicklin MJ, Murray MG, et al. A second virus‐encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell. 1986; 45: 761 ‐ 770.
dc.identifier.citedreferenceBasavappa R, Syed R, Flore O, et al. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci. 1994; 3: 1651 ‐ 1669.
dc.identifier.citedreferenceMizutani S, Colonno RJ. In vitro synthesis of an infectious RNA from cDNA clones of human rhinovirus type 14. J Virol. 1985; 56: 628 ‐ 632.
dc.identifier.citedreferenceSkern T, Torgersen H, Auer H, et al. Human rhinovirus mutants resistant to low pH. Virology. 1991; 183: 757 ‐ 763.
dc.identifier.citedreferenceTomusange K, Yu WB, Suhrbier A, et al. Engineering human rhinovirus serotype‐A1 as a vaccine vector. Virus Res. 2015; 203: 72 ‐ 76.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.