Show simple item record

Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption

dc.contributor.authorZeng, Zhao‐cheng
dc.contributor.authorNatraj, Vijay
dc.contributor.authorXu, Feng
dc.contributor.authorPongetti, Thomas J.
dc.contributor.authorShia, Run‐lie
dc.contributor.authorKort, Eric A.
dc.contributor.authorToon, Geoffrey C.
dc.contributor.authorSander, Stanley P.
dc.contributor.authorYung, Yuk L.
dc.date.accessioned2018-11-20T15:34:55Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10-16
dc.identifier.citationZeng, Zhao‐cheng ; Natraj, Vijay; Xu, Feng; Pongetti, Thomas J.; Shia, Run‐lie ; Kort, Eric A.; Toon, Geoffrey C.; Sander, Stanley P.; Yung, Yuk L. (2018). "Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption." Geophysical Research Letters 45(19): 10,772-10,780.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/146438
dc.description.abstractThis study attempts to infer aerosol vertical structure in the urban boundary layer using passive hyperspectral measurements. A spectral sorting technique is developed to retrieve total aerosol optical depth (AOD) and effective aerosol layer height (ALH) from hyperspectral measurements in the 1.27â μm oxygen absorption band by the mountaintop Fourier Transform Spectrometer at the California Laboratory for Atmospheric Remote Sensing instrument (1,673 m above sea level) overlooking the LA basin. Comparison to AOD measurements from Aerosol Robotic Network and aerosol backscatter profile measurements from a Mini MicroPulse Lidar shows agreement, with coefficients of determination (r2) of 0.74 for AOD and 0.57 for effective ALH. On average, the AOD retrieval has an error of 24.9% and rootâ meanâ square error of 0.013, while the effective ALH retrieval has an error of 7.8% and rootâ meanâ square error of 67.01 m. The proposed method can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain aerosol vertical distribution on a global scale.Plain Language SummarySatellite and groundâ based measurements have enabled accurate and continuous monitoring of total aerosol loading. However, these measurements provide little or no information on the vertical distribution of aerosols. In particular, there is poor measurement of aerosols in the planetary boundary layer, the part of the atmosphere closest to the surface. In this study, we develop an algorithm to retrieve the vertical structure of aerosols in the boundary layer using remote sensing observations of oxygen absorption with high spectral resolution. The algorithm is applied to infer the vertical profile of air pollutants in the Los Angeles basin using measurements made by a mountaintop instrument overlooking the basin. The proposed retrieval algorithm can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain the aerosol vertical distribution on a global scale. This important piece of information on aerosol vertical structure will potentially address several key priorities in the 2017 U.S. National Research Council Earth Science Decadal Survey, from forecasting air pollution in cities, quantifying the aerosol impact on Earth’s climate, and reducing biases in greenhouse gas retrievals.Key PointsA method is developed to constrain aerosol vertical profiles in the boundary layer using hyperspectral measurements of oxygen absorptionThe method is tested using hyperspectral measurement of reflected solar radiation from a mountaintop instrument to infer aerosol profilesThe method can potentially be applied to satellite observations to constrain aerosol vertical structure on a global scale
dc.publisherInternational Society for Optics and Photonics
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCLARS
dc.subject.otherremote sensing
dc.subject.otherhyperspectral
dc.subject.otherPBL
dc.subject.otheraerosol profiling
dc.subject.othermegacity
dc.titleConstraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146438/1/grl58079.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146438/2/grl58079_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146438/3/grl58079-sup-0001-2018GL079286-SI.pdf
dc.identifier.doi10.1029/2018GL079286
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceTimofeyev, Y. M., Vasilyev, A. V., & Rozanov, V. V. ( 1995 ). Information content of the spectral measurements of the 0.76 μm O 2 outgoing radiation with respect to the vertical aerosol optical properties. Advances in Space Research, 16 ( 10 ), 91 â 94. https://doi.org/10.1016/0273â 1177(95)00385â R
dc.identifier.citedreferenceKalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., & Joseph, D. ( 1996 ). The NCEP/NCAR 40â year reanalysis project. Bulletin of the American Meteorological Society, 77 ( 3 ), 437 â 471. https://doi.org/10.1175/1520â 0477(1996)077<0437:TNYRP>2.0.CO;2
dc.identifier.citedreferenceKinne, S., Lohmann, U., Feichter, J., Schulz, M., Timmreck, C., Ghan, S., et al. ( 2003 ). Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. Journal of Geophysical Research, 108 ( D20 ), 4634. https://doi.org/10.1029/2001JD001253
dc.identifier.citedreferenceKoffi, B., Schulz, M., Bréon, F. M., Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S., Berntsen, T., Chin, M., Collins, W. D., Dentener, F., Diehl, T., Easter, R., Ghan, S., Ginoux, P., Gong, S., Horowitz, L. W., Iversen, T., Kirkevåg, A., Koch, D., Krol, M., Myhre, G., Stier, P., & Takemura, T. ( 2012 ). Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 117, D10201. https://doi.org/10.1029/2011JD016858
dc.identifier.citedreferenceKuang, Z. M., Margolis, J., Toon, G., Crisp, D., & Yung, Y. L. ( 2002 ). Spaceborne measurements of atmospheric CO 2 by highâ resolution NIR spectrometry of reflected sunlight: An introductory study. Geophysical Research Letters, 29 ( 15 ), 1716. https://doi.org/10.1029/2001GL014298
dc.identifier.citedreferenceLiu, Y., & Diner, D. J. ( 2017 ). Multiâ angle imager for aerosols: A satellite investigation to benefit public health. Public Health Reports, 132 ( 1 ), 14 â 17. https://doi.org/10.1177/0033354916679983
dc.identifier.citedreferenceO’Brien, D. M., & Mitchell, R. M. ( 1992 ). Error estimates for retrieval of cloudâ top pressure using absorption in the Aâ band of oxygen. Journal of Applied Meteorology, 31 ( 10 ), 1179 â 1192. https://doi.org/10.1175/1520â 0450(1992)031<1179:EEFROC>2.0.CO;2
dc.identifier.citedreferenceO’Dell, C. W., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., et al. ( 2012 ). The ACOS CO 2 retrieval algorithmâ Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 5, 99 â 121. https://doi.org/10.5194/amtâ 5â 99â 2012
dc.identifier.citedreferenceRichardson, M., McDuffie, J., Stephens, G. L., Cronk, H. Q., & Taylor, T. E. ( 2017 ). The OCOâ 2 oxygen Aâ band response to liquid marine cloud properties from CALIPSO and MODIS. Journal of Geophysical Research: Atmospheres, 122, 8255 â 8275. https://doi.org/10.1002/2017JD026561
dc.identifier.citedreferenceSanghavi, S., Martonchik, J. V., Landgraf, J., & Platt, U. ( 2012 ). Retrieval of aerosol optical depth and vertical distribution using O 2 Aâ and Bâ band SCIAMACHY observations over Kanpur: A case study. Atmospheric Measurement Techniques, 5 ( 5 ), 1099 â 1119. https://doi.org/10.5194/amtâ 5â 1099â 2012
dc.identifier.citedreferenceSeinfeld, J., & Pandis, S. ( 2006 ). Atmospheric chemistry and physics: From air pollution to climate change (p. 1224 ). New Jersey: John Wiley.
dc.identifier.citedreferenceSen, B., Toon, G. C., Blavier, J.â F., Fleming, E. L., & Jackman, C. H. ( 1996 ). Balloonâ borne observations of midâ latitude fluorine abundance. Journal of Geophysical Research, 101 ( D4 ), 9045 â 9054. https://doi.org/10.1029/96JD00227
dc.identifier.citedreferenceSpurr, R. J. D., & Natraj, V. ( 2011 ). A linearized 2â stream radiative transfer code for fast approximation of multipleâ scatter fields. Journal of Quantitative Spectroscopy & Radiative Transfer, 112 ( 16 ), 2630 â 2637. https://doi.org/10.1016/j.jqsrt.2011.06.014
dc.identifier.citedreferenceTorres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., & Gleason, J. ( 1998 ). Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. Journal of Geophysical Research, 103 ( D14 ), 17,099 â 17,110.
dc.identifier.citedreferenceWang, J., Xu, X., Ding, S., Zeng, J., Spurr, R., Liu, X., Chance, K., & Mishchenko, M. ( 2014 ). A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEOâ CAPE and GOESâ R. Journal of Quantitative Spectroscopy & Radiative Transfer, 146, 510 â 528. https://doi.org/10.1016/j.jqsrt.2014.03.020
dc.identifier.citedreferenceWare, J., Kort, E. A., DeCola, P., & Duren, R. ( 2016 ). Aerosol lidar observations of atmospheric mixing in Los Angeles: Climatology and implications for greenhouse gas observations. Journal of Geophysical Research: Atmospheres, 121, 9862 â 9878. https://doi.org/10.1002/2016JD024953
dc.identifier.citedreferenceWinker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., & Young, S. A. ( 2009 ). Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26 ( 11 ), 2310 â 2323. https://doi.org/10.1175/2009JTECHA1281.1
dc.identifier.citedreferenceWong, C. K., Pongetti, T. J., Oda, T., Rao, P., Gurney, K. R., Newman, S., Duren, R. M., Miller, C. E., Yung, Y. L., & Sander, S. P. ( 2016 ). Monthly trends of methane emissions in Los Angeles from 2011 to 2015 inferred by CLARSâ FTS observations. Atmospheric Chemistry and Physics, 16 ( 20 ), 13,121 â 13,130. https://doi.org/10.5194/acpâ 16â 13121â 2016
dc.identifier.citedreferenceWong, K. W., Fu, D., Pongetti, T. J., Newman, S., Kort, E. A., Duren, R., et al. ( 2015 ). Mapping CH4: CO 2 ratios in Los Angeles with CLARSâ FTS from Mount Wilson, California. Atmospheric Chemistry and Physics, 15, 241 â 2252. https://doi.org/10.5194/acpâ 15â 241â 2015
dc.identifier.citedreferenceWu, L., Hasekamp, O., van Diedenhoven, B., & Cairns, B. ( 2015 ). Aerosol retrieval from multiangle, multispectral photopolarimetric measurements: Importance of spectral range and angular resolution. Atmospheric Measurement Techniques, 8 ( 6 ), 2625 â 2638. https://doi.org/10.5194/amtâ 8â 2625â 2015
dc.identifier.citedreferenceWunch, D., Toon, G. C., Blavier, J.â F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., & Wennberg, P. O. ( 2011 ). The total carbon column observing network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 ( 1943 ), 2087 â 2112. https://doi.org/10.1098/rsta.2010.0240
dc.identifier.citedreferenceXi, X., Natraj, V., Shia, R. L., Luo, M., Zhang, Q., Newman, S., Sander, S. P., & Yung, Y. L. ( 2015 ). Simulated retrievals for the remote sensing of CO 2, CH 4, CO, and H 2 O from geostationary orbit. Atmospheric Measurement Techniques, 8 ( 11 ), 4817 â 4830. https://doi.org/10.5194/amtâ 8â 4817â 2015
dc.identifier.citedreferenceXu, F., van Harten, G., Diner, D. J., Kalashnikova, O. V., Seidel, F. C., Bruegge, C. J., & Dubovik, O. ( 2017 ). Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Journal of Geophysical Research: Atmospheres, 122, 7004 â 7026.
dc.identifier.citedreferenceXu, X., Wang, J., Wang, Y., Zeng, J., Torres, O., Yang, Y., Marshak, A., Reid, J., & Miller, S. ( 2017 ). Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR at Lagrangeâ 1 point. Geophysical Research Letters, 44, 7544 â 7554. https://doi.org/10.1002/2017GL073939
dc.identifier.citedreferenceYamamoto, G., & Wark, D. Q. ( 1961 ). Discussion of the letter by R.A. Hanel, Determination of cloud altitude from a satellite. Journal of Geophysical Research, 66 ( 10 ), 3596. https://doi.org/10.1029/JZ066i010p03596
dc.identifier.citedreferenceZarzycki, C. M., & Bond, T. C. ( 2010 ). How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophysical Research Letters, 37, L20807. https://doi.org/10.1029/2010GL044555
dc.identifier.citedreferenceZeng, Z.â C., Zhang, Q., Natraj, V., Margolis, J. S., Shia, R.â L., Newman, S., Fu, D., Pongetti, T. J., Wong, K. W., Sander, S. P., Wennberg, P. O., & Yung, Y. L. ( 2017 ). Aerosol scattering effects on water vapor retrievals over the Los Angeles Basin. Atmospheric Chemistry and Physics, 17 ( 4 ), 2495 â 2508. https://doi.org/10.5194/acpâ 17â 2495â 2017
dc.identifier.citedreferenceZhang, Q., Natraj, V., Li, K.â F., Shia, R.â L., Fu, D., Pongetti, T. J., Sander, S. P., Roehl, C. M., & Yung, Y. L. ( 2015 ). Accounting for aerosol scattering in the CLARS retrieval of column averaged CO 2 mixing ratios. Journal of Geophysical Research: Atmospheres, 120, 7205 â 7218. https://doi.org/10.1002/2015JD023499
dc.identifier.citedreferenceZhang, Q., Shia, R.â L., Sander, S. P., & Yung, Y. L. ( 2016 ). XCO 2 retrieval error over deserts near critical surface albedo. Earth and Space Science, 3, 36 â 45. https://doi.org/10.1002/2015EA000143
dc.identifier.citedreferenceButz, A., Hasekamp, O. P., Frankenberg, C., & Aben, I. ( 2009 ). Retrievals of atmospheric CO 2 from simulated spaceâ borne measurements of backscattered nearâ infrared sunlight: Accounting for aerosol effects. Applied Optics, 48 ( 18 ), 3322 â 3336. https://doi.org/10.1364/AO.48.003322
dc.identifier.citedreferenceCairns, B., Russell, E. E., & Travis, L. D. ( 1999 ). Research scanning polarimeter: Calibration and groundâ based measurements. In Polarization: Measurement, analysis, and remote sensing II, Proc. SPIE (Vol. 3754, pp. 186 â 197 ). Denver, CO: International Society for Optics and Photonics. https://doi.org/10.1117/12.366329
dc.identifier.citedreferenceColosimo, S. F., Natraj, V., Sander, S. P., & Stutz, J. ( 2016 ). A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen Aâ band. Atmospheric Measurement Techniques, 9 ( 4 ), 1889 â 1905. https://doi.org/10.5194/amtâ 9â 1889â 2016
dc.identifier.citedreferenceCrisp, D., Fisher, B. M., O’Dell, C., Frankenberg, C., Basilio, R., Bösch, H., et al. ( 2012 ). The ACOS CO 2 retrieval algorithmâ Part II: Global XCO 2 data characterization. Atmospheric Measurement Techniques, 5 ( 4 ), 687 â 707. https://doi.org/10.5194/amtâ 5â 687â 2012
dc.identifier.citedreferenceDavis, A. B., Kalashnikova, O. V., and Diner, D. J. ( 2017 ). Aerosol layer height over water from O 2 Aâ band: monoâ angle hyperspectral and/or biâ spectral multiâ angle observations. Preprint, https://doi.org/10.20944/preprints201710.0055.v1
dc.identifier.citedreferenceDiner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., & Kahn, R. A. ( 1998 ). Multiâ angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36 ( 4 ), 1072 â 1087. https://doi.org/10.1109/36.700992
dc.identifier.citedreferenceDiner, D. J., Braswell, B. H., Davies, R., Gobron, N., Hu, J., Jin, Y., Kahn, R. A., Knyazikhin, Y., Loeb, N., Muller, J. P., Nolin, A. W., Pinty, B., Schaaf, C. B., Seiz, G., & Stroeve, J. ( 2005 ). The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment, 97 ( 4 ), 495 â 518. https://doi.org/10.1016/j.rse.2005.06.006
dc.identifier.citedreferenceDing, S., Wang, J., & Xu, X. ( 2016 ). Polarimetric remote sensing in oxygen A and B bands: Sensitivity study and information content analysis for vertical profile of aerosols. Atmospheric Measurement Techniques, 9 ( 5 ), 2077 â 2092. https://doi.org/10.5194/amtâ 9â 2077â 2016
dc.identifier.citedreferenceDubuisson, P., Frouin, R., Dessailly, D., Duforêt, L., Léon, J.â F., Voss, K., & Antoine, D. ( 2009 ). Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O 2 Aâ band. Remote Sensing of Environment, 113 ( 9 ), 1899 â 1911. https://doi.org/10.1016/j.rse.2009.04.018
dc.identifier.citedreferenceEldering, A., Kaki, S., Crisp, D., & Gunson, M. R. ( 2013 ). The OCOâ 3 mission. Abstracts A21Gâ 0134 presented at 2013 Fall Meeting, American Geophysical Union, San Francisco, CA, 9â 13 Dec.
dc.identifier.citedreferenceFrankenberg, C., Butz, A., & Toon, G. C. ( 2011 ). Disentangling chlorophyll fluorescence from atmospheric scattering effects in O 2 Aâ band spectra of reflected sunâ light. Geophysical Research Letters, 38, L03801. https://doi.org/10.1029/2010GL045896
dc.identifier.citedreferenceFu, D., Pongetti, T. J., Blavier, J.â F. L., Crawford, T. J., Manatt, K. S., Toon, G. C., Wong, K. W., & Sander, S. P. ( 2014 ). Nearâ infrared remote sensing of Los Angeles trace gas distributions from a mountaintop site. Atmospheric Measurement Techniques, 7 ( 3 ), 713 â 729. https://doi.org/10.5194/amtâ 7â 713â 2014
dc.identifier.citedreferenceGabella, M., Kisselev, V., & Perona, G. ( 1999 ). Retrieval of aerosol profile variations from reflected radiation in the oxygen absorption a band. Applied Optics, 38 ( 15 ), 3190 â 3195. https://doi.org/10.1364/AO.38.003190
dc.identifier.citedreferenceGeddes, A., & Bösch, H. ( 2015 ). Tropospheric aerosol profile information from highâ resolution oxygen Aâ band measurements from space. Atmospheric Measurement Techniques, 8 ( 2 ), 859 â 874. https://doi.org/10.5194/amtâ 8â 859â 2015
dc.identifier.citedreferenceHeidinger, A., & Stephens, G. L. ( 2000 ). Molecular line absorption in a scattering atmosphere, Part II: Application to remote sensing in the O 2 Aâ band. Journal of the Atmospheric Sciences, 57 ( 10 ), 1615 â 1634. https://doi.org/10.1175/1520â 0469
dc.identifier.citedreferenceHenyey, L. G., & Greenstein, J. L. ( 1941 ). Diffuse radiation in the galaxy. The Astrophysical Journal, 93, 70 â 83.
dc.identifier.citedreferenceHolben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., & Setzer, A. ( 1998 ). AERONETâ A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66 ( 1â 16 ), 1998.
dc.identifier.citedreferenceHollstein, A., & Fischer, J. ( 2014 ). Retrieving aerosol height from the oxygen A band: A fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity. Atmospheric Measurement Techniques, 7 ( 5 ), 1429 â 1441. https://doi.org/10.5194/amtâ 7â 1429â 2014
dc.identifier.citedreferenceHou, W., Wang, J., Xu, X., & Reid, J. S. ( 2017 ). An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra. Journal of Quantitative Spectroscopy & Radiative Transfer, 192, 14 â 29. https://doi.org/10.1016/j.jqsrt.2017.01.041
dc.identifier.citedreferenceIntergovernmental Panel on Climate Change ( 2013 ). In T. F. Stocker, et al. (Eds.), Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 595 â 605 ). Cambridge, UK, and New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
dc.identifier.citedreferenceIrion, F. W., Gunson, M. R., Toon, G. C., Chang, A. Y., Eldering, A., Mahieu, E., Manney, G. L., Michelsen, H. A., Moyer, E. J., Newchurch, M. J., Osterman, G. B., Rinsland, C. P., Salawitch, R. J., Sen, B., Yung, Y. L., & Zander, R. ( 2002 ). Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment version 3 data retrievals. Applied Optics, 41 ( 33 ), 6968 â 6979. https://doi.org/10.1364/AO.41.006968
dc.identifier.citedreferenceJethva, H., Torres, O., & Ahn, C. ( 2014 ). Global assessment of OMI aerosol singleâ scattering albedo using groundâ based AERONET inversion. Journal of Geophysical Research: Atmospheres, 119, 9020 â 9040. https://doi.org/10.1002/2014JD021672
dc.identifier.citedreferenceKahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., Martonchik, J. V., & Levy, R. C. ( 2007 ). Satelliteâ derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. Journal of Geophysical Research, 112, D18205. https://doi.org/10.1029/2006JD008175
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.