Show simple item record

Multispecies and Multifluid MHD Approaches for the Study of Ionospheric Escape at Mars

dc.contributor.authorRegoli, L. H.
dc.contributor.authorDong, C.
dc.contributor.authorMa, Y.
dc.contributor.authorDubinin, E.
dc.contributor.authorManchester, W. B.
dc.contributor.authorBougher, S. W.
dc.contributor.authorWelling, D. T.
dc.date.accessioned2018-11-20T15:34:57Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationRegoli, L. H.; Dong, C.; Ma, Y.; Dubinin, E.; Manchester, W. B.; Bougher, S. W.; Welling, D. T. (2018). "Multispecies and Multifluid MHD Approaches for the Study of Ionospheric Escape at Mars." Journal of Geophysical Research: Space Physics 123(9): 7370-7383.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/146439
dc.description.abstractA detailed model‐model comparison between the results provided by a multispecies and a multifluid magnetohydrodynamic (MHD) code for the escape of heavy ions in the Martian‐induced magnetosphere is presented. The results from the simulations are analyzed and compared against a statistical analysis of the outflow of heavy ions obtained by the Mars Atmosphere and Volatile EvolutioN/Suprathermal and Thermal Ion Composition instrument over an extended period of time in order to estimate the influence of magnetic forces in the ion escape. Both MHD models are run with the same chemical reactions and ion species in a steady state mode under idealized solar conditions. Apart from being able to reproduce the asymmetries observed in the ion escape, it is found that the multifluid approach provides results that are closer to those inferred from the ion data. It is also found that the j × B force term is less effective in accelerating the ions in the models when compared with the Mars Atmosphere and Volatile EvolutioN results. Finally, by looking at the contribution of the plume and the ion escape rates at different distances along the tail with the multifluid model, it is also found that the escape of heavy ions has important variabilities along the tail, meaning that the apoapsis of a spacecraft studying atmospheric escape can affect the estimates obtained.Key PointsOverall modeled ion escape and relative contribution of the plume depend on downtail distanceAcceleration from j times B force appears weaker in simulations when compared to MAVEN dataAsymmetries in the escape arise from upstream conditions, crustal fields, and neutral atmosphere
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMAVEN
dc.subject.otherion escape
dc.subject.otherMHD
dc.subject.otherMars
dc.titleMultispecies and Multifluid MHD Approaches for the Study of Ionospheric Escape at Mars
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146439/1/jgra54496_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146439/2/jgra54496.pdf
dc.identifier.doi10.1029/2017JA025117
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLundin, R., Zakharov, A., Pellinen, R., Barabasj, S. W., Borg, H., Dubinin, E. M., et al. ( 1990 ). Aspera/Phobos measurements of the ion outflow from the MARTIAN ionosphere. Geophysical Research Letters, 17 ( 6 ), 873 – 876.
dc.identifier.citedreferenceGlocer, A., Tóth, G., Ma, Y., Gombosi, T., Zhang, J.‐C., & Kistler, L. M. ( 2009 ). Multifluid Block‐Adaptive‐Tree Solar wind Roe‐type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results. Journal of Geophysical Research, 114, A12203. https://doi.org/10.1029/2009JA014418
dc.identifier.citedreferenceHalekas, J. S., Eastwood, J. P., Brain, D. A., Phan, T. D., Øieroset, M., & Lin, R. P. ( 2009 ). In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters. Journal of Geophysical Research, 114, A11204. https://doi.org/10.1029/2009JA014544
dc.identifier.citedreferenceHarada, Y., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Mazelle, C., Connerney, J. E. P., et al. ( 2015a ). Magnetic reconnection in the near‐Mars magnetotail: MAVEN observations. Geophysical Research Letters, 42, 8838 – 8845. https://doi.org/10.1002/2015GL065004
dc.identifier.citedreferenceHarada, Y., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Mazelle, C., Connerney, J. E. P., et al. ( 2015b ). Marsward and tailward ions in the near‐Mars magnetotail: MAVEN observations. Geophysical Research Letters, 42, 8925 – 8932. https://doi.org/10.1002/2015GL065005
dc.identifier.citedreferenceHarnett, E. M., & Winglee, R. M. ( 2006 ). Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. Journal of Geophysical Research, 111, A09213. https://doi.org/10.1029/2006JA011724
dc.identifier.citedreferenceHolmstrom, M., & Wang, X.‐D. ( 2015 ). Mars as a comet: Solar wind interaction on a large scale. Planetary and Space Science, 119, 43 – 47. https://doi.org/10.1016/j.pss.2015.09.017
dc.identifier.citedreferenceJakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. ( 2015 ). The Mars Atmosphere and Volatile Evolution (MAVEN) Mission,. Space Science Reviews, 195, 3 – 48. https://doi.org/10.1007/s11214-015-0139-x
dc.identifier.citedreferenceKallio, E., Fedorov, A., Budnik, E., Säles, T., Janhunen, P., Schmidt, W., et al. ( 2006 ). Ion escape at Mars: Comparison of a 3‐D hybrid simulation with Mars Express IMA/ASPERA‐3 measurements. Icarus, 182, 350 – 359. https://doi.org/10.1016/j.icarus.2005.09.018
dc.identifier.citedreferenceLammer, H., Chassefière, E., Karatekin, O., Morschhauser, A., Niles, P. B., Mousis, O., et al. ( 2013 ). Outgassing history and escape of the Martian atmosphere and water inventory. Space Science Reviews, 174 ( 1 ), 113 – 154.
dc.identifier.citedreferenceLedvina, S. A., Ma, Y.‐J., & Kallio, E. ( 2008 ). Modeling and simulating flowing plasmas and related phenomena. Space Science Reviews, 139 ( 1 ), 143 – 189. https://doi.org/10.1007/s11214-008-9384-6
dc.identifier.citedreferenceLunine, J. I., Chambers, J., Morbidelli, A., & Leshin, L. A. ( 2003 ). The origin of water on Mars. Icarus, 165 ( 1 ), 1 – 8.
dc.identifier.citedreferenceMa, Y., Fang, X., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., et al. ( 2014 ). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophysical Research Letters, 41, 6563 – 6569. https://doi.org/10.1002/2014GL060785
dc.identifier.citedreferenceMa, Y., Nagy, A. F., Sokolov, I. V., & Hansen, K. C. ( 2004 ). Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. Journal of Geophysical Research, 109, A07211. https://doi.org/10.1029/2003JA010367
dc.identifier.citedreferenceMcFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., et al. ( 2015 ). MAVEN SupraThermal and Thermal Ion Compostion (STATIC) instrument. Space Science Reviews, 195, 199 – 256. https://doi.org/10.1007/s11214-015-0175-6
dc.identifier.citedreferenceModolo, R., Chanteur, G. M., Dubinin, E., & Matthews, A. P. ( 2005 ). Influence of the solar EUV flux on the Martian plasma environment. Annales Geophysicae, 23, 433 – 444. https://doi.org/10.5194/angeo-23-433-2005
dc.identifier.citedreferenceNajib, D., Nagy, A. F., Toth, G., & Ma, Y. ( 2011 ). Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. Journal of Geophysical Research, 116, A05204. https://doi.org/10.1029/2010JA016272
dc.identifier.citedreferenceNilsson, H., Edberg, N. J. T., Stenberg, G., Barabash, S., Holmström, M., Futaana, Y., et al. ( 2011 ). Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 215, 475 – 484. https://doi.org/10.1016/j.icarus.2011.08.003
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & Zeeuw, D. L. D. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferenceRamstad, R., Barabash, S., Futaana, Y., Nilsson, H., & Holmström, M. ( 2017 ). Global Mars—Solar wind coupling and ion escape. Journal of Geophysical Research: Space Physics, 122, 8051 – 8062. https://doi.org/10.1002/2017JA024306
dc.identifier.citedreferenceRegoli, L. H. ( 2018 ). Simulation outputs for M‐GITM, MS‐MHD and MF‐MHD. https://doi.org/10.7302/Z2GH9G49
dc.identifier.citedreferenceRomanelli, N., Bertucci, C., Gómez, D., Mazelle, C., & Delva, M. ( 2013 ). Proton cyclotron waves upstream from Mars: Observations from Mars Global Surveyor. Planetary and Space Science, 76, 1 – 9. https://doi.org/10.1016/j.pss.2012.10.011
dc.identifier.citedreferenceRussell, C. T., Mayerberger, S. S., & Blanco‐Cano, X. ( 2006 ). Proton cyclotron waves at Mars and Venus. Advances in Space Research, 38, 745 – 751. https://doi.org/10.1016/j.asr.2005.02.091
dc.identifier.citedreferenceVerigin, M. I., Shutte, N. M., Galeev, A. A., Gringauz, K. I., Kotova, G. A., Remizov, A. P., et al. ( 1991 ). Ions of planetary origin in the Martian magnetosphere (Phobos 2/TAUS experiment). Planetary and Space Science, 39, 131 – 137. https://doi.org/10.1016/0032-0633(91)90135-W
dc.identifier.citedreferenceWei, H. Y., Russell, C. T., Zhang, T. L., & Blanco‐Cano, X. ( 2011 ). Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planetary and Space Science, 59, 1039 – 1047. https://doi.org/10.1016/j.pss.2010.01.004
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ). A 50‐degree spherical harmonic model of the magnetic field of Mars. Journal of Geophysical Research, 106, 23,197 – 23,208. https://doi.org/10.1029/2000JE001365
dc.identifier.citedreferenceBarabash, S., Fedorov, A., Lundin, R., & Sauvaud, J.‐A. ( 2007 ). Martian atmospheric erosion rates. Science, 315, 501 – 503. https://doi.org/10.1126/science.1134358
dc.identifier.citedreferenceBößwetter, A., Simon, S., Bagdonat, T., Motschmann, U., Fränz, M., Roussos, E., et al. ( 2007 ). Comparison of plasma data from ASPERA‐3/Mars‐Express with a 3‐D hybrid simulation. Annales Geophysicae, 25, 1851 – 1864. https://doi.org/10.5194/angeo-25-1851-2007
dc.identifier.citedreferenceBougher, S. W., Engel, S., Roble, R. G., & Foster, B. ( 1999 ). Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox. Journal of Geophysical Research, 104, 16,591 – 16,611. https://doi.org/10.1029/1998JE001019
dc.identifier.citedreferenceBougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., et al. ( 2015 ). Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311 – 342. https://doi.org/10.1002/2014JE004715
dc.identifier.citedreferenceBrain, D. A., Bagenal, F., Ma, Y.‐J., Nilsson, H., & Stenberg Wieser, G. ( 2016 ). Atmospheric escape from unmagnetized bodies. Journal of Geophysical Research: Planets, 121, 2364 – 2385. https://doi.org/10.1002/2016JE005162
dc.identifier.citedreferenceBrain, D. A., Hurley, D., & Combi, M. R. ( 2010 ). The solar wind interaction with Mars: Recent progress and future directions. Icarus, 206 ( 1 ), 1 – 4. https://doi.org/10.1016/j.icarus.2009.10.020
dc.identifier.citedreferenceBrain, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S., & Lin, R. P. ( 2007 ). Electron pitch angle distributions as indicators of magnetic field topology near Mars. Journal of Geophysical Research, 112, A09201. https://doi.org/10.1029/2007JA012435
dc.identifier.citedreferenceBrain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Bougher, S. W., Curry, S., et al. ( 2015 ). The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 42, 9142 – 9148. https://doi.org/10.1002/2015GL065293
dc.identifier.citedreferenceBrecht, S. H., Ferrante, J. R., & Luhmann, J. G. ( 1993 ). Three‐dimensional simulations of the solar wind interaction with Mars. Journal of Geophysical Research, 98, 1345 – 1357. https://doi.org/10.1029/92JA02198
dc.identifier.citedreferenceBrecht, S. H., Ledvina, S. A., & Bougher, S. W. ( 2016 ). Ionospheric loss from Mars as predicted by hybrid particle simulations. Journal of Geophysical Research: Space Physics, 121, 10,190 – 10,208. https://doi.org/10.1002/2016JA022548
dc.identifier.citedreferenceBrecht, S. H., Ledvina, S. A., & Jakosky, B. M. ( 2017 ). The role of the electron temperature on ion loss from Mars. Journal of Geophysical Research: Space Physics, 122, 8375 – 8390. https://doi.org/10.1002/2016JA023510
dc.identifier.citedreferenceCloutier, P. A., McElroy, M. B., & Michel, F. C. ( 1969 ). Modification of the Martian ionosphere by the solar wind. Journal of Geophysical Research, 74, 6215. https://doi.org/10.1029/JA074i026p06215
dc.identifier.citedreferenceCoates, A. J., Wellbrock, A., Waite, J. H., & Jones, G. H. ( 2015 ). A new upper limit to the field‐aligned potential near Titan. Geophysical Research Letters, 42, 4676 – 4684. https://doi.org/10.1002/2015GL064474
dc.identifier.citedreferenceCollinson, G. A., Frahm, R. A., Glocer, A., Coates, A. J., Grebowsky, J. M., Barabash, S., et al. ( 2016 ). The electric wind of Venus: A global and persistent “polar wind”‐like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophysical Research Letters, 43, 5926 – 5934. https://doi.org/10.1002/2016GL068327
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Toth, G., Lee, Y., Nagy, A. F., et al. ( 2015 ). Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research: Space Physics, 120, 7857 – 7872. https://doi.org/10.1002/2015JA020990
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Toth, G., Nagy, A. F., & Najib, D. ( 2014 ). Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model. Geophysical Research Letters, 41, 2708 – 2715. https://doi.org/10.1002/2014GL059515
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., et al. ( 2015 ). Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 42, 8942 – 8950. https://doi.org/10.1002/2015GL065346
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., et al. ( 2017 ). Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 4009 – 4022. https://doi.org/10.1002/2016JA023517
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Halekas, J. S., DiBraccio, G. A., et al. ( 2017 ). The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 11,285 – 11,301. https://doi.org/10.1002/2017JA024741
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Mahaffy, P. R., Eparvier, F., et al. ( 2017 ). “Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations”. Journal of Geophysical Research: Space Physics, 122, 7142 – 7152. https://doi.org/10.1002/2017JA024126
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Woch, J., Zhang, T. L., Wei, J., Fedorov, A., et al. ( 2012 ). Bursty escape fluxes in plasma sheets of Mars and Venus. Geophysical Research Letters, 39, L01104. https://doi.org/10.1029/2011GL049883
dc.identifier.citedreferenceDubinin, E., Fränz, M., Woch, J., Roussos, E., Barabash, S., Lundin, R., et al. ( 2006 ). Plasma Morphology at Mars. Aspera‐3 Observations. Space Science Reviews, 126, 209 – 238. https://doi.org/10.1007/s11214-006-9039-4
dc.identifier.citedreferenceEastwood, J. P., Brain, D. A., Halekas, J. S., Drake, J. F., Phan, T. D., Øieroset, M., et al. ( 2008 ). Evidence for collisionless magnetic reconnection at Mars. Geophysical Research Letters, 35, L02106. https://doi.org/10.1029/2007GL032289
dc.identifier.citedreferenceFang, X., Ma, Y., Masunaga, K., Dong, Y., Brain, D., Halekas, J., et al. ( 2017 ). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 122, 4117 – 4137. https://doi.org/10.1002/2016JA023509
dc.identifier.citedreferenceFjeldbo, G., & Eshleman, V. R. ( 1968 ). The atmosphere of mars analyzed by integral inversion of the Mariner IV occultation data. Planetary and Space Science, 16, 1035 – 1059. https://doi.org/10.1016/0032-0633(68)90020-2
dc.identifier.citedreferenceFox, J. L., & Hać, A. B. ( 2009 ). Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus, 204, 527 – 544. https://doi.org/10.1016/j.icarus.2009.07.005
dc.identifier.citedreferenceFränz, M., Dubinin, E., Andrews, D., Barabash, S., Nilsson, H., & Fedorov, A. ( 2015 ). Cold ion escape from the Martian ionosphere. Planetary and Space Science, 119, 92 – 102. https://doi.org/10.1016/j.pss.2015.07.012
dc.identifier.citedreferenceFung, S. F., & Hoffman, R. A. ( 1991 ). A search for parallel electric fields by observing secondary electrons and photoelectrons in the low‐altitude auroral zone,. Journal of Geophysical Research, 96, 3533 – 3548. https://doi.org/10.1029/90JA02244
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.