Show simple item record

Dynamic balance of pro‐ and anti‐inflammatory signals controls disease and limits pathology

dc.contributor.authorCicchese, Joseph M.
dc.contributor.authorEvans, Stephanie
dc.contributor.authorHult, Caitlin
dc.contributor.authorJoslyn, Louis R.
dc.contributor.authorWessler, Timothy
dc.contributor.authorMillar, Jess A.
dc.contributor.authorMarino, Simeone
dc.contributor.authorCilfone, Nicholas A.
dc.contributor.authorMattila, Joshua T.
dc.contributor.authorLinderman, Jennifer J.
dc.contributor.authorKirschner, Denise E.
dc.date.accessioned2018-11-20T15:35:08Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationCicchese, Joseph M.; Evans, Stephanie; Hult, Caitlin; Joslyn, Louis R.; Wessler, Timothy; Millar, Jess A.; Marino, Simeone; Cilfone, Nicholas A.; Mattila, Joshua T.; Linderman, Jennifer J.; Kirschner, Denise E. (2018). "Dynamic balance of pro‐ and anti‐inflammatory signals controls disease and limits pathology." Immunological Reviews (1): 147-167.
dc.identifier.issn0105-2896
dc.identifier.issn1600-065X
dc.identifier.urihttps://hdl.handle.net/2027.42/146448
dc.description.abstractImmune responses to pathogens are complex and not well understood in many diseases, and this is especially true for infections by persistent pathogens. One mechanism that allows for long‐term control of infection while also preventing an over‐zealous inflammatory response from causing extensive tissue damage is for the immune system to balance pro‐ and anti‐inflammatory cells and signals. This balance is dynamic and the immune system responds to cues from both host and pathogen, maintaining a steady state across multiple scales through continuous feedback. Identifying the signals, cells, cytokines, and other immune response factors that mediate this balance over time has been difficult using traditional research strategies. Computational modeling studies based on data from traditional systems can identify how this balance contributes to immunity. Here we provide evidence from both experimental and mathematical/computational studies to support the concept of a dynamic balance operating during persistent and other infection scenarios. We focus mainly on tuberculosis, currently the leading cause of death due to infectious disease in the world, and also provide evidence for other infections. A better understanding of the dynamically balanced immune response can help shape treatment strategies that utilize both drugs and host‐directed therapies.
dc.publisherCurrent Biology Ltd./Garland Publishing Inc.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercytokines infectious disease
dc.subject.otherimmune response
dc.subject.othermathematical modelling
dc.subject.othermycobacterium tuberculosis
dc.subject.othergranuloma
dc.titleDynamic balance of pro‐ and anti‐inflammatory signals controls disease and limits pathology
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146448/1/imr12671.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146448/2/imr12671_am.pdf
dc.identifier.doi10.1111/imr.12671
dc.identifier.sourceImmunological Reviews
dc.identifier.citedreferenceWroblewski LE, Peek RM Jr, Wilson KT. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev. 2010; 23: 713 ‐ 739.
dc.identifier.citedreferenceFlynn JL, Scanga CA, Tanaka KE, Chan J. Effects of aminoguanidine on latent murine tuberculosis. J Immunol. 1998; 160: 1796 ‐ 1803.
dc.identifier.citedreferenceAverhoff FM, Glass N, Holtzman D. Global burden of hepatitis C: Considerations for healthcare providers in the United States. Clin Infect Dis. 2012; 55 ( Suppl 1 ): S10 ‐ S15.
dc.identifier.citedreferenceKim AY, Onofrey S, Church DR. An epidemiologic update on hepatitis C infection in persons living with or at risk of HIV infection. J Infect Dis. 2013; 207 ( Suppl 1 ): S1 ‐ S6.
dc.identifier.citedreferenceBoltjes A, Movita D, Boonstra A, Woltman AM. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol. 2014; 61: 660 ‐ 671.
dc.identifier.citedreferenceSaha B, Szabo G. Innate immune cell networking in hepatitis C virus infection. J Leukoc Biol. 2014; 96: 757 ‐ 766.
dc.identifier.citedreferenceYoon JC, Yang CM, Song Y, Lee JM. Natural killer cells in hepatitis C: Current progress. World J Gastroenterol. 2016; 22: 1449 ‐ 1460.
dc.identifier.citedreferenceTian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology. 2013; 57: 1654 ‐ 1662.
dc.identifier.citedreferenceNguyen‐Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function. J Enzymol Metabol. 2015; 1: 101.
dc.identifier.citedreferenceMengshol JA, Golden‐Mason L, Arikawa T, et al. A crucial role for Kupffer cell‐derived galectin‐9 in regulation of T cell immunity in hepatitis C infection. PLoS ONE. 2010; 5: e9504.
dc.identifier.citedreferenceHartling HJ, Gaardbo JC, Ronit A, et al. CD4(+) and CD8(+) regulatory T cells (Tregs) are elevated and display an active phenotype in patients with chronic HCV mono‐infection and HIV/HCV co‐infection. Scand J Immunol. 2012; 76: 294 ‐ 305.
dc.identifier.citedreferenceBarjon C, Dahlqvist G, Calmus Y, Conti F. Role of regulatory T‐cells during hepatitis C infection: From the acute phase to post‐transplantation recurrence. Digest Liver Dis. 2015; 47: 913 ‐ 917.
dc.identifier.citedreferenceTerilli RR, Cox AL. Immunity and hepatitis C: A review. Curr HIV/AIDS Rep. 2013; 10: 51 ‐ 58.
dc.identifier.citedreferenceGremion C, Cerny A. Hepatitis C virus and the immune system: A concise review. Rev Med Virol. 2005; 15: 235 ‐ 268.
dc.identifier.citedreferenceBurg D, Rong L, Neumann AU, Dahari H. Mathematical modeling of viral kinetics under immune control during primary HIV‐1 infection. J Theor Biol. 2009; 259: 751 ‐ 759.
dc.identifier.citedreferenceObaid A, Ahmad J, Naz A, et al. Modeling and analysis of innate immune responses induced by the host cells against hepatitis C virus infection. Integr Biol (Camb). 2015; 7: 544 ‐ 559.
dc.identifier.citedreferenceOsburn WO, Levine JS, Chattergoon MA, Thomas DL, Cox AL. Anti‐inflammatory cytokines, pro‐fibrogenic chemokines and persistence of acute HCV infection. J Viral Hepatitis. 2013; 20: 404 ‐ 413.
dc.identifier.citedreferenceWiesner DL, Klein BS. The balance between immunity and inflammation. Science. 2017; 357: 973 ‐ 974.
dc.identifier.citedreferenceMartin SJ. Oncogene‐induced autophagy and the Goldilocks principle. Autophagy. 2011; 7: 922 ‐ 923.
dc.identifier.citedreferenceMonin L, Khader SA. Chemokines in tuberculosis: The good, the bad and the ugly. Semin Immunol. 2014; 26: 552 ‐ 558.
dc.identifier.citedreferenceSlight SR, Khader SA. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev. 2013; 24: 105 ‐ 113.
dc.identifier.citedreferenceEizenberg‐Magar I, Rimer J, Zaretsky I, Lara‐Astiaso D, Reich‐Zeliger S, Friedman N. Diverse continuum of CD4(+) T‐cell states is determined by hierarchical additive integration of cytokine signals. Proc Natl Acad Sci USA. 2017; 114: E6447 ‐ E6456.
dc.identifier.citedreferenceFang M, Xie H, Dougan SK, Ploegh H, van Oudenaarden A. Stochastic cytokine expression induces mixed T helper cell States. PLoS Biol. 2013; 11: e1001618.
dc.identifier.citedreferenceLin PL, Dartois V, Johnston PJ, et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci USA. 2012; 109: 14188 ‐ 14193.
dc.identifier.citedreferenceVia LE, Weiner DM, Schimel D, et al. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset ( Callithrix jacchus ). Infect Immun. 2013; 81: 2909 ‐ 2919.
dc.identifier.citedreferenceStanton P, Richards S, Reeves J, et al. Epidermal growth factor receptor expression by human squamous cell carcinomas of the head and neck, cell lines and xenografts. Br J Cancer. 1994; 70: 427 ‐ 433.
dc.identifier.citedreferenceCorti A, Gasparri A, Sacchi A, et al. Tumor targeting with biotinylated tumor necrosis factor alpha: Structure‐activity relationships and mechanism of action on avidin pretargeted tumor cells. Cancer Res. 1998; 58: 3866 ‐ 3872.
dc.identifier.citedreferenceZimmermann VS, Bondanza A, Monno A, Rovere‐Querini P, Corti A, Manfredi AA. TNF‐alpha coupled to membrane of apoptotic cells favors the cross‐priming to melanoma antigens. J Immunol. 2004; 172: 2643 ‐ 2650.
dc.identifier.citedreferenceDesnoyers L, Simonette RA, Vandlen RL, Fendly BM. Novel non‐isotopic method for the localization of receptors in tissue sections. J Histochem Cytochem. 2001; 49: 1509 ‐ 1518.
dc.identifier.citedreferenceWiley HS, Cunningham DD. The endocytotic rate constant. A cellular parameter for quantitating receptor‐mediated endocytosis. J Biol Chem. 1982; 257: 4222 ‐ 4229.
dc.identifier.citedreferenceCilfone NA. Understanding and Treating Mycobacterium tuberculosis Infection: A Multi‐Scale Modeling Approach: Chemical Engineering. Ann Arbor, MI: University of Michigan; 2014.
dc.identifier.citedreferencePienaar E, Dartois V, Linderman JJ, Kirschner DE. In silico evaluation and exploration of antibiotic tuberculosis treatment regimens. BMC Syst Biol. 2015; 9: 79.
dc.identifier.citedreferenceLyadova I. Inflammation and immunopathogenesis of tuberculosis progression, understanding tuberculosis – Analyzing the origin of Mycobacterium tuberculosis pathogenicity. InTech; 2012.
dc.identifier.citedreferenceJasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev. 2015; 264: 74 ‐ 87.
dc.identifier.citedreferenceNussing S, Sant S, Koutsakos M, Subbarao K, Nguyen THO, Kedzierska K. Innate and adaptive T cells in influenza disease. Front Med. 2018; 12: 34 ‐ 47.
dc.identifier.citedreferenceZuniga EI, Macal M, Lewis GM, Harker JA. Innate and adaptive immune regulation during chronic viral infections. Annu Rev Virol. 2015; 2: 573 ‐ 597.
dc.identifier.citedreferenceMurphy K, Weaver C. Immunobiology, 9th edn. New York, NY: Current Biology Ltd./Garland Publishing Inc.; 2016.
dc.identifier.citedreferenceDomingo‐Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr. 2016; 4:TBTB2‐0018‐2016.
dc.identifier.citedreferenceLin PL, Rodgers M, Smith L, et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun. 2009; 77: 4631 ‐ 4642.
dc.identifier.citedreferenceLin PL, Flynn JL. Understanding latent tuberculosis: a moving target. J Immunol. 2010; 185: 15 ‐ 22.
dc.identifier.citedreferenceRamakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012; 12: 352 ‐ 366.
dc.identifier.citedreferenceHerrera V, Perry S, Parsonnet J, Banaei N. Clinical application and limitations of interferon‐gamma release assays for the diagnosis of latent tuberculosis infection. Clin Infect Dis. 2011; 52: 1031 ‐ 1037.
dc.identifier.citedreferenceAl‐Orainey IO. Diagnosis of latent tuberculosis: Can we do better? Ann Thor Med. 2009; 4: 5 ‐ 9.
dc.identifier.citedreferenceFlynn JL, Chan J. Tuberculosis: latency and reactivation. Infect Immun. 2001; 69: 4195 ‐ 4201.
dc.identifier.citedreferenceZumla A, Raviglione M, Hafner R, von Reyn CF. Tuberculosis. N Engl J Med. 2013; 368: 745 ‐ 755.
dc.identifier.citedreferenceDiedrich CR, Flynn JL. HIV‐1/ Mycobacterium tuberculosis coinfection immunology: how does HIV‐1 exacerbate tuberculosis? Infect Immun. 2011; 79: 1407 ‐ 1417.
dc.identifier.citedreferenceMarino S, Sud D, Plessner H, et al. Differences in reactivation of tuberculosis induced from anti‐TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput Biol. 2007; 3: 1909 ‐ 1924.
dc.identifier.citedreferenceBarry CE 3rd, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009; 7: 845 ‐ 855.
dc.identifier.citedreferenceFlynn JL, Klein E. Pulmonary tuberculosis in monkeys. In: Leong J, Dick T, eds. A Color Atlas of Comparative Pulmonary Tuberculosis Histopathology. Boca Raton, FL: CRC Press, Taylor & Francis; 2011: 83 ‐ 106.
dc.identifier.citedreferenceLin PL, Ford CB, Coleman MT, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within‐host variability in bacterial killing. Nat Med. 2014; 20: 75 ‐ 79.
dc.identifier.citedreferenceMartin CJ, Cadena AM, Leung VW, et al. Digitally barcoding Mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. MBio. 2017; 8: e00312 ‐ e00317.
dc.identifier.citedreferenceCadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol. 2017; 17: 691 ‐ 702.
dc.identifier.citedreferenceLeem AY, Song JH, Lee EH, et al. Changes in cytokine responses to TB antigens ESAT‐6, CFP‐10 and TB 7.7 and inflammatory markers in peripheral blood during therapy. Sci Rep. 2018; 8: 1159.
dc.identifier.citedreferenceBadell E, Nicolle F, Clark S, et al. Protection against tuberculosis induced by oral prime with Mycobacterium bovis BCG and intranasal subunit boost based on the vaccine candidate Ag85B‐ESAT‐6 does not correlate with circulating IFN‐γ gamma producing T‐cells. Vaccine. 2009; 27: 28 ‐ 37.
dc.identifier.citedreferenceClark S, Cross ML, Smith A, et al. Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette‐Guerin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis. Vaccine. 2008; 26: 5791 ‐ 5797.
dc.identifier.citedreferenceDey B, Jain R, Khera A, et al. Boosting with a DNA vaccine expressing ESAT‐6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs. Vaccine. 2009; 28: 63 ‐ 70.
dc.identifier.citedreferenceFreches D, Romano M, Korf H, et al. Increased pulmonary tumor necrosis factor alpha, interleukin‐6 (IL‐6), and IL‐17A responses compensate for decreased gamma interferon production in anti‐IL‐12 autovaccine‐treated, Mycobacterium bovis BCG‐vaccinated mice. Clin Vaccine Immunol. 2011; 18: 95 ‐ 104.
dc.identifier.citedreferenceLawn SD, Wilkinson RJ, Lipman MC, Wood R. Immune reconstitution and “unmasking” of tuberculosis during antiretroviral therapy. Am J Respir Crit Care Med. 2008; 177: 680 ‐ 685.
dc.identifier.citedreferenceGreen AM, Difazio R, Flynn JL. IFN‐γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol. 2013; 190: 270 ‐ 277.
dc.identifier.citedreferenceEinarsdottir T, Lockhart E, Flynn JL. Cytotoxicity and secretion of gamma interferon are carried out by distinct CD8 T cells during Mycobacterium tuberculosis infection. Infect Immun. 2009; 77: 4621 ‐ 4630.
dc.identifier.citedreferenceLazarevic V, Flynn J. CD8+ T cells in tuberculosis. Am J Respir Crit Care Med. 2002; 166: 1116 ‐ 1121.
dc.identifier.citedreferenceChen CY, Huang D, Wang RC, et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog. 2009; 5: e1000392.
dc.identifier.citedreferenceSaunders BM, Frank AA, Orme IM, Cooper AM. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol. 2002; 216: 65 ‐ 72.
dc.identifier.citedreferenceLin PL, Rutledge T, Green AM, et al. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retroviruses. 2012; 28: 1693 ‐ 1702.
dc.identifier.citedreferenceScanga CA, Mohan VP, Yu K, et al. Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med. 2000; 192: 347 ‐ 358.
dc.identifier.citedreferenceYao S, Huang D, Chen CY, Halliday L, Wang RC, Chen ZW. CD4+ T cells contain early extrapulmonary tuberculosis (TB) dissemination and rapid TB progression and sustain multieffector functions of CD8+ T and CD3‐ lymphocytes: Mechanisms of CD4+ T cell immunity. J Immunol. 2014; 192: 2120 ‐ 2132.
dc.identifier.citedreferenceBates M, Marais BJ, Zumla A. Tuberculosis comorbidity with communicable and noncommunicable diseases. Cold Spring Harb Perspect Med. 2015; 5: a017889.
dc.identifier.citedreferenceDiedrich CR, Mattila JT, Klein E, et al. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS ONE. 2010; 5: e9611.
dc.identifier.citedreferenceBarber DL, Mayer‐Barber KD, Feng CG, Sharpe AH, Sher A. CD4 T cells promote rather than control tuberculosis in the absence of PD‐1‐mediated inhibition. J Immunol. 2011; 186: 1598 ‐ 1607.
dc.identifier.citedreferenceGreen AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL. CD4(+) regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis. 2010; 202: 533 ‐ 541.
dc.identifier.citedreferenceLazar‐Molnar E, Chen B, Sweeney KA, et al. Programmed death‐1 (PD‐1)‐deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci USA. 2010; 107: 13402 ‐ 13407.
dc.identifier.citedreferenceWindish HP, Lin PL, Mattila JT, et al. Aberrant TGF‐beta signaling reduces T regulatory cells in ICAM‐1‐deficient mice, increasing the inflammatory response to Mycobacterium tuberculosis. J Leukoc Biol. 2009; 86: 713 ‐ 725.
dc.identifier.citedreferenceGideon HP, Phuah J, Myers AJ, et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro‐ and anti‐inflammatory cytokines is associated with sterilization. PLoS Pathog. 2015; 11: e1004603.
dc.identifier.citedreferenceOrme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic immune responses in the TB‐infected lung. Nat Immunol. 2015; 16: 57 ‐ 63.
dc.identifier.citedreferenceFlynn JL, Chan J, Lin PL. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol. 2011; 4: 271 ‐ 278.
dc.identifier.citedreferenceGordon S, Martinez FO. Alternative activation of macrophages: Mechanism and functions. Immunity. 2010; 32: 593 ‐ 604.
dc.identifier.citedreferenceChan J, Tanaka K, Carroll D, Flynn J, Bloom BR. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun. 1995; 63: 736 ‐ 740.
dc.identifier.citedreferenceMacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA. 1997; 94: 5243 ‐ 5248.
dc.identifier.citedreferenceMattila JT, Ojo OO, Kepka‐Lenhart D, et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol. 2013; 191: 773 ‐ 784.
dc.identifier.citedreferencede Cassan SC, Pathan AA, Sander CR, et al. Investigating the induction of vaccine‐induced Th17 and regulatory T cells in healthy, Mycobacterium bovis BCG‐immunized adults vaccinated with a new tuberculosis vaccine, MVA85A. Clin Vaccine Immunol. 2010; 17: 1066 ‐ 1073.
dc.identifier.citedreferenceGarcia Jacobo RE, Serrano CJ, Enciso Moreno JA, et al. Analysis of Th1, Th17 and regulatory T cells in tuberculosis case contacts. Cell Immunol. 2014; 289: 167 ‐ 173.
dc.identifier.citedreferenceTorrado E, Cooper AM. IL‐17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev. 2010; 21: 455 ‐ 462.
dc.identifier.citedreferenceYe ZJ, Zhou Q, Du RH, Li X, Huang B, Shi HZ. Imbalance of Th17 cells and regulatory T cells in tuberculous pleural effusion. Clin Vaccine Immunol. 2011; 18: 1608 ‐ 1615.
dc.identifier.citedreferenceHe XY, Xiao L, Chen HB, et al. T regulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients. Eur J Clin Microbiol Infect Dis. 2010; 29: 643 ‐ 650.
dc.identifier.citedreferenceHougardy JM, Place S, Hildebrand M, et al. Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med. 2007; 176: 409 ‐ 416.
dc.identifier.citedreferenceLim HJ, Park JS, Cho YJ, et al. CD4(+)FoxP3(+) T regulatory cells in drug‐susceptible and multidrug‐resistant tuberculosis. Tuberculosis. 2013; 93: 523 ‐ 528.
dc.identifier.citedreferenceLowe DM, Redford PS, Wilkinson RJ, O’Garra A, Martineau AR. Neutrophils in tuberculosis: Friend or foe? Trends Immunol. 2012; 33: 14 ‐ 25.
dc.identifier.citedreferenceMartineau AR, Newton SM, Wilkinson KA, et al. Neutrophil‐mediated innate immune resistance to mycobacteria. J Clin Invest. 2007; 117: 1988 ‐ 1994.
dc.identifier.citedreferenceChristensen D, Mortensen R, Rosenkrands I, Dietrich J, Andersen P. Vaccine‐induced Th17 cells are established as resident memory cells in the lung and promote local IgA responses. Mucosal Immunol. 2017; 10: 260 ‐ 270.
dc.identifier.citedreferenceKhader SA, Bell GK, Pearl JE, et al. IL‐23 and IL‐17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007; 8: 369 ‐ 377.
dc.identifier.citedreferenceKhader SA, Cooper AM. IL‐23 and IL‐17 in tuberculosis. Cytokine. 2008; 41: 79 ‐ 83.
dc.identifier.citedreferenceKhader SA, Gopal R. IL‐17 in protective immunity to intracellular pathogens. Virulence. 2010; 1: 423 ‐ 427.
dc.identifier.citedreferenceScott‐Browne JP, Shafiani S, Tucker‐Heard G, et al. Expansion and function of Foxp3‐expressing T regulatory cells during tuberculosis. J Exp Med. 2007; 204: 2159 ‐ 2169.
dc.identifier.citedreferenceShafiani S, Tucker‐Heard G, Kariyone A, Takatsu K, Urdahl KB. Pathogen‐specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med. 2010; 207: 1409 ‐ 1420.
dc.identifier.citedreferenceDarrah PA, Patel DT, De Luca PM, et al. Multifunctional TH1 cells define a correlate of vaccine‐mediated protection against Leishmania major. Nat Med. 2007; 13: 843 ‐ 850.
dc.identifier.citedreferenceMacedo AB, Sanchez‐Arcila JC, Schubach AO, et al. Multifunctional CD4(+) T cells in patients with American cutaneous leishmaniasis. Clin Exp Immunol. 2012; 167: 505 ‐ 513.
dc.identifier.citedreferenceCalifano D, Sweeney KJ, Le H, et al. Diverting T helper cell trafficking through increased plasticity attenuates autoimmune encephalomyelitis. J Clin Invest. 2014; 124: 174 ‐ 187.
dc.identifier.citedreferenceCarbo A, Hontecillas R, Kronsteiner B, et al. Systems modeling of molecular mechanisms controlling cytokine‐driven CD4+ T cell differentiation and phenotype plasticity. PLoS Comput Biol. 2013; 9: e1003027.
dc.identifier.citedreferenceVoo KS, Wang YH, Santori FR, et al. Identification of IL‐17‐producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA. 2009; 106: 4793 ‐ 4798.
dc.identifier.citedreferenceHovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin‐17‐producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology. 2011; 140: 957 ‐ 965.
dc.identifier.citedreferenceMorrison PJ, Bending D, Fouser LA, et al. Th17‐cell plasticity in Helicobacter hepaticus ‐induced intestinal inflammation. Mucosal Immunol. 2013; 6: 1143 ‐ 1156.
dc.identifier.citedreferenceAnnunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007; 204: 1849 ‐ 1861.
dc.identifier.citedreferenceWilkinson KA, Wilkinson RJ. Polyfunctional T cells in human tuberculosis. Eur J Immunol. 2010; 40: 2139 ‐ 2142.
dc.identifier.citedreferenceMattila JT, Diedrich CR, Lin PL, Phuah J, Flynn JL. Simian immunodeficiency virus‐induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. J Immunol. 2011; 186: 3527 ‐ 3537.
dc.identifier.citedreferenceQiu Z, Zhang M, Zhu Y, et al. Multifunctional CD4 T cell responses in patients with active tuberculosis. Sci Rep. 2012; 2: 216.
dc.identifier.citedreferenceHarari A, Rozot V, Bellutti Enders F, et al. Dominant TNF‐alpha+ Mycobacterium tuberculosis ‐specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med. 2011; 17: 372 ‐ 376.
dc.identifier.citedreferenceBeveridge NE, Price DA, Casazza JP, et al. Immunisation with BCG and recombinant MVA85A induces long‐lasting, polyfunctional Mycobacterium tuberculosis ‐specific CD4+ memory T lymphocyte populations. Eur J Immunol. 2007; 37: 3089 ‐ 3100.
dc.identifier.citedreferenceBurke MA, Morel BF, Oriss TB, Bray J, McCarthy SA, Morel PA. Modeling the proliferative response of T cells to IL‐2 and IL‐4. Cell Immunol. 1997; 178: 42 ‐ 52.
dc.identifier.citedreferenceSegel LA, Bar‐Or RL. On the role of feedback in promoting conflicting goals of the adaptive immune system. J Immunol. 1999; 163: 1342 ‐ 1349.
dc.identifier.citedreferenceYates A, Callard R, Stark J. Combining cytokine signalling with T‐bet and GATA‐3 regulation in Th1 and Th2 differentiation: A model for cellular decision‐making. J Theor Biol. 2004; 231: 181 ‐ 196.
dc.identifier.citedreferenceFishman MA, Perelson AS. Th1/Th2 cross regulation. J Theor Biol. 1994; 170: 25 ‐ 56.
dc.identifier.citedreferencePerelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol. 2002; 2: 28 ‐ 36.
dc.identifier.citedreferenceKirschner D, Pienaar E, Marino S, Linderman JJ. A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within‐host infection and treatment. Curr Opin Syst Biol. 2017; 3: 170 ‐ 185.
dc.identifier.citedreferenceWigginton JE, Kirschner D. A model to predict cell‐mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J Immunol. 2001; 166: 1951 ‐ 1967.
dc.identifier.citedreferenceMurray PJ, Young RA. Increased antimycobacterial immunity in interleukin‐10‐deficient mice. Infect Immun. 1999; 67: 3087 ‐ 3095.
dc.identifier.citedreferenceMarino S, Kirschner DE. The human immune response to Mycobacterium tuberculosis in lung and lymph node. J Theor Biol. 2004; 227: 463 ‐ 486.
dc.identifier.citedreferenceMarino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol. 2004; 173: 494 ‐ 506.
dc.identifier.citedreferenceMarino S, Gideon HP, Gong C, et al. Computational and empirical studies predict Mycobacterium tuberculosis ‐specific T cells as a biomarker for infection outcome. PLoS Comput Biol. 2016; 12: e1004804.
dc.identifier.citedreferenceMarino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun. 2015; 83: 324 ‐ 338.
dc.identifier.citedreferenceMarino S, Myers A, Flynn JL, Kirschner DE. TNF and IL‐10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: A next‐generation two‐compartmental model. J Theor Biol. 2010; 265: 586 ‐ 598.
dc.identifier.citedreferenceMyers AJ, Marino S, Kirschner DE, Flynn JL. Inoculation dose of Mycobacterium tuberculosis does not influence priming of T cell responses in lymph nodes. J Immunol. 2013; 190: 4707 ‐ 4716.
dc.identifier.citedreferenceMarino S, El‐Kebir M, Kirschner D. A hybrid multi‐compartment model of granuloma formation and T cell priming in Tuberculosis. J Theor Biol. 2011; 280: 50 ‐ 62.
dc.identifier.citedreferenceDay J, Friedman A, Schlesinger LS. Modeling the immune rheostat of macrophages in the lung in response to infection. Proc Natl Acad Sci USA. 2009; 106: 11246 ‐ 11251.
dc.identifier.citedreferenceMatzinger P. The danger model: A renewed sense of self. Science. 2002; 296: 301 ‐ 305.
dc.identifier.citedreferenceLin PL, Coleman T, Carney JP, et al. Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother. 2013; 57: 4237 ‐ 4244.
dc.identifier.citedreferenceColeman MT, Chen RY, Lee M, et al. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med. 2014; 6: 265ra167.
dc.identifier.citedreferenceCilfone NA, Perry CR, Kirschner DE, Linderman JJ. Multi‐scale modeling predicts a balance of tumor necrosis factor‐alpha and interleukin‐10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS ONE. 2013; 8: e68680.
dc.identifier.citedreferenceFallahi‐Sichani M, El‐Kebir M, Marino S, Kirschner DE, Linderman JJ. Multiscale computational modeling reveals a critical role for TNF‐alpha receptor 1 dynamics in tuberculosis granuloma formation. J Immunol. 2011; 186: 3472 ‐ 3483.
dc.identifier.citedreferenceRay JC, Flynn JL, Kirschner DE. Synergy between individual TNF‐dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J Immunol. 2009; 182: 3706 ‐ 3717.
dc.identifier.citedreferenceSegovia‐Juarez JL, Ganguli S, Kirschner D. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent‐based model. J Theor Biol. 2004; 231: 357 ‐ 376.
dc.identifier.citedreferenceFallahi‐Sichani M, Kirschner DE, Linderman JJ. NF‐kappaB signaling dynamics play a key role in infection control in tuberculosis. Front Physiol. 2012; 3: 170.
dc.identifier.citedreferencePienaar E, Matern WM, Linderman JJ, Bader JS, Kirschner DE. Multiscale model of Mycobacterium tuberculosis infection maps metabolite and gene perturbations to granuloma sterilization predictions. Infect Immun. 2016; 84: 1650 ‐ 1669.
dc.identifier.citedreferenceCilfone NA, Ford CB, Marino S, et al. Computational modeling predicts IL‐10 control of lesion sterilization by balancing early host immunity‐mediated antimicrobial responses with caseation during Mycobacterium tuberculosis infection. J Immunol. 2015; 194: 664 ‐ 677.
dc.identifier.citedreferenceKirschner DE, Hunt CA, Marino S, Fallahi‐Sichani M, Linderman JJ. Tuneable resolution as a systems biology approach for multi‐scale, multi‐compartment computational models. Wiley Interdiscip Rev Syst Biol Med. 2014; 6: 289 ‐ 309.
dc.identifier.citedreferenceFallahi‐Sichani M, Flynn JL, Linderman JJ, Kirschner DE. Differential risk of tuberculosis reactivation among anti‐TNF therapies is due to drug binding kinetics and permeability. J Immunol. 2012; 188: 3169 ‐ 3178.
dc.identifier.citedreferenceFallahi‐Sichani M, Schaller MA, Kirschner DE, Kunkel SL, Linderman JJ. Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLoS Comput Biol. 2010; 6: e1000778.
dc.identifier.citedreferenceWarsinske HC, Pienaar E, Linderman JJ, Mattila JT, Kirschner DE. Deletion of TGF‐beta1 increases bacterial clearance by cytotoxic T cells in a tuberculosis granuloma model. Front Immunol. 2017; 8: 1843.
dc.identifier.citedreferenceFuller CL, Flynn JL, Reinhart TA. In situ study of abundant expression of proinflammatory chemokines and cytokines in pulmonary granulomas that develop in cynomolgus macaques experimentally infected with Mycobacterium tuberculosis. Infect Immun. 2003; 71: 7023 ‐ 7034.
dc.identifier.citedreferenceClay H, Volkman HE, Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity. 2008; 29: 283 ‐ 294.
dc.identifier.citedreferenceAlgood HM, Lin PL, Flynn JL. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis. 2005; 41 ( Suppl 3 ): S189 ‐ S193.
dc.identifier.citedreferenceAlgood HM, Lin PL, Yankura D, Jones A, Chan J, Flynn JL. TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J Immunol. 2004; 172: 6846 ‐ 6857.
dc.identifier.citedreferenceLee J, Remold HG, Ieong MH, Kornfeld H. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase‐independent pathway. J Immunol. 2006; 176: 4267 ‐ 4274.
dc.identifier.citedreferenceIto T, Schaller M, Hogaboam CM, et al. TLR9 regulates the mycobacteria‐elicited pulmonary granulomatous immune response in mice through DC‐derived Notch ligand delta‐like 4. J Clin Invest. 2009; 119: 33 ‐ 46.
dc.identifier.citedreferenceChensue SW, Warmington K, Ruth JH, Lukacs N, Kunkel SL. Mycobacterial and schistosomal antigen‐elicited granuloma formation in IFN‐γ and IL‐4 knockout mice: Analysis of local and regional cytokine and chemokine networks. J Immunol. 1997; 159: 3565 ‐ 3573.
dc.identifier.citedreferenceChensue SW, Warmington K, Ruth J, Lincoln P, Kuo MC, Kunkel SL. Cytokine responses during mycobacterial and schistosomal antigen‐induced pulmonary granuloma formation. Production of Th1 and Th2 cytokines and relative contribution of tumor necrosis factor. Am J Pathol. 1994; 145: 1105 ‐ 1113.
dc.identifier.citedreferenceChensue SW, Ruth JH, Warmington K, Lincoln P, Kunkel SL. In vivo regulation of macrophage IL‐12 production during type 1 and type 2 cytokine‐mediated granuloma formation. J Immunol. 1995; 155: 3546 ‐ 3551.
dc.identifier.citedreferenceWarsinske HC, Ashley SL, Linderman JJ, Moore BB, Kirschner DE. Identifying mechanisms of homeostatic signaling in fibroblast differentiation. Bull Math Biol. 2015; 77: 1556 ‐ 1582.
dc.identifier.citedreferenceWarsinske HC, Wheaton AK, Kim KK, Linderman JJ, Moore BB, Kirschner DE. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis. Front Pharmacol. 2016; 7: 183.
dc.identifier.citedreferenceWarsinske HC, DiFazio RM, Linderman JJ, Flynn JL, Kirschner DE. Identifying mechanisms driving formation of granuloma‐associated fibrosis during Mycobacterium tuberculosis infection. J Theor Biol. 2017; 429: 1 ‐ 17.
dc.identifier.citedreferenceMayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014; 9: 181 ‐ 218.
dc.identifier.citedreferenceLyadova IV. Neutrophils in tuberculosis: Heterogeneity shapes the way? Mediators Inflamm. 2017; 2017: 8619307.
dc.identifier.citedreferenceMcCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death. 2014; 7: 15 ‐ 23.
dc.identifier.citedreferenceWitko‐Sarsat V, Rieu P, Descamps‐Latscha B, Lesavre P, Halbwachs‐Mecarelli L. Neutrophils: Molecules, functions and pathophysiological aspects. Lab Invest. 2000; 80: 617 ‐ 653.
dc.identifier.citedreferenceLin PL, Pawar S, Myers A, et al. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun. 2006; 74: 3790 ‐ 3803.
dc.identifier.citedreferenceMattila JT, Maiello P, Sun T, Via LE, Flynn JL. Granzyme B‐expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis ‐infected cynomolgus macaques. Cell Microbiol. 2015; 17: 1085 ‐ 1097.
dc.identifier.citedreferenceBru A, Cardona PJ. Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS ONE. 2010; 5: e12985.
dc.identifier.citedreferenceBieberly J, Ali J. Treatment adherence of the latently infected tuberculosis population (post‐Katrina) at Wetmore TB Clinic, New Orleans, USA. Int J Tuberc Lung Dis. 2008; 12: 1134 ‐ 1138.
dc.identifier.citedreferenceDartois V. The path of anti‐tuberculosis drugs: From blood to lesions to mycobacterial cells. Nat Rev Microbiol. 2014; 12: 159 ‐ 167.
dc.identifier.citedreferenceKjellsson MC, Via LE, Goh A, et al. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother. 2012; 56: 446 ‐ 457.
dc.identifier.citedreferenceSarathy JP, Zuccotto F, Hsinpin H, et al. Prediction of drug penetration in tuberculosis lesions. ACS Infect Dis. 2016; 2: 552 ‐ 563.
dc.identifier.citedreferencePienaar E, Cilfone NA, Lin PL, et al. A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J Theor Biol. 2015; 367: 166 ‐ 179.
dc.identifier.citedreferencePrideaux B, Dartois V, Staab D, et al. High‐sensitivity MALDI‐MRM‐MS imaging of moxifloxacin distribution in tuberculosis‐infected rabbit lungs and granulomatous lesions. Anal Chem. 2011; 83: 2112 ‐ 2118.
dc.identifier.citedreferenceZimmerman M, Lestner J, Prideaux B, et al. Ethambutol partitioning in tuberculous pulmonary lesions explains its clinical efficacy. Antimicrob Agents Chemother. 2017; 61: e00924‐17.
dc.identifier.citedreferencePienaar E, Sarathy J, Prideaux B, et al. Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi‐scale systems pharmacology approach. PLoS Comput Biol. 2017; 13: e1005650.
dc.identifier.citedreferenceWallis RS, Hafner R. Advancing host‐directed therapy for tuberculosis. Nat Rev Immunol. 2015; 15: 255 ‐ 263.
dc.identifier.citedreferenceFlynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor‐alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995; 2: 561 ‐ 572.
dc.identifier.citedreferenceWallis RS, Broder M, Wong J, Lee A, Hoq L. Reactivation of latent granulomatous infections by infliximab. Clin Infect Dis. 2005; 41 ( Suppl 3 ): S194 ‐ S198.
dc.identifier.citedreferenceLin PL, Myers A, Smith L, et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum. 2010; 62: 340 ‐ 350.
dc.identifier.citedreferenceWallis RS, Kyambadde P, Johnson JL, et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV‐1‐associated tuberculosis. AIDS. 2004; 18: 257 ‐ 264.
dc.identifier.citedreferenceMayanja‐Kizza H, Jones‐Lopez E, Okwera A, et al. Immunoadjuvant prednisolone therapy for HIV‐associated tuberculosis: A phase 2 clinical trial in Uganda. J Infect Dis. 2005; 191: 856 ‐ 865.
dc.identifier.citedreferenceSubbian S, Tsenova L, Holloway J, et al. Adjunctive phosphodiesterase‐4 inhibitor therapy improves antibiotic response to pulmonary tuberculosis in a rabbit model. EBioMedicine. 2016; 4: 104 ‐ 114.
dc.identifier.citedreferenceSubbian S, Tsenova L, O’Brien P, et al. Phosphodiesterase‐4 inhibition alters gene expression and improves isoniazid‐mediated clearance of Mycobacterium tuberculosis in rabbit lungs. PLoS Pathog. 2011; 7: e1002262.
dc.identifier.citedreferenceKoo MS, Manca C, Yang G, et al. Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS ONE. 2011; 6: e17091.
dc.identifier.citedreferenceKaye P, Scott P. Leishmaniasis: Complexity at the host‐pathogen interface. Nat Rev Microbiol. 2011; 9: 604 ‐ 615.
dc.identifier.citedreferenceContreras I, Estrada JA, Guak H, et al. Impact of Leishmania mexicana infection on dendritic cell signaling and functions. PLoS Negl Trop Dis. 2014; 8: e3202.
dc.identifier.citedreferenceMaioli TU, Takane E, Arantes RM, Fietto JL, Afonso LC. Immune response induced by New World Leishmania species in C57BL/6 mice. Parasitol Res. 2004; 94: 207 ‐ 212.
dc.identifier.citedreferenceMattner F, Magram J, Ferrante J, et al. Genetically resistant mice lacking interleukin‐12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol. 1996; 26: 1553 ‐ 1559.
dc.identifier.citedreferenceSwihart K, Fruth U, Messmer N, et al. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1‐type CD4+ T cell response. J Exp Med. 1995; 181: 961 ‐ 971.
dc.identifier.citedreferenceKopf M, Brombacher F, Kohler G, et al. IL‐4‐deficient Balb/c mice resist infection with Leishmania major. J Exp Med. 1996; 184: 1127 ‐ 1136.
dc.identifier.citedreferenceKaye PM, Beattie L. Lessons from other diseases: Granulomatous inflammation in leishmaniasis. Semin Immunopathol. 2016; 38: 249 ‐ 260.
dc.identifier.citedreferenceAoun J, Habib R, Charaffeddine K, Taraif S, Loya A, Khalifeh I. Caseating granulomas in cutaneous leishmaniasis. PLoS Negl Trop Dis. 2014; 8: e3255.
dc.identifier.citedreferenceDe Almeida MC, Moreira HN. A mathematical model of immune response in cutaneous leishmaniasis. J Biol Syst. 2007; 15: 313 ‐ 354.
dc.identifier.citedreferenceSiewe N, Yakubu AA, Satoskar AR, Friedman A. Immune response to infection by Leishmania: A mathematical model. Math Biosci. 2016; 276: 28 ‐ 43.
dc.identifier.citedreferenceAlbergante L, Timmis J, Beattie L, Kaye PM. A Petri net model of granulomatous inflammation: Implications for IL‐10 mediated control of Leishmania donovani infection. PLoS Comput Biol. 2013; 9: e1003334.
dc.identifier.citedreferenceRibeiro HAL, Maioli TU, de Freitas LM, Tieri P, Castiglione F. Modeling immune response to leishmania species indicates adenosine as an important inhibitor of Th‐cell activation. Front Cell Infect Microbiol. 2017; 7: 309.
dc.identifier.citedreferenceBrown LM. Helicobacter pylori: Epidemiology and routes of transmission. Epidemiol Rev. 2000; 22: 283 ‐ 297.
dc.identifier.citedreferencePerry S, de Jong BC, Solnick JV, et al. Infection with Helicobacter pylori is associated with protection against tuberculosis. PLoS ONE. 2010; 5: e8804.
dc.identifier.citedreferenceFalk GW. The possible role of Helicobacter pylori in GERD. Semin Gastrointest Dis. 2001; 12: 186 ‐ 195.
dc.identifier.citedreferenceLord AR, Simms LA, Hanigan K, Sullivan R, Hobson P, Radford‐Smith GL. Protective effects of Helicobacter pylori for IBD are related to the cagA‐positive strain. Gut. 2018; 67: 393 ‐ 394.
dc.identifier.citedreferenceBlaser MJ, Chen Y, Reibman J. Does Helicobacter pylori protect against asthma and allergy? Gut. 2008; 57: 561 ‐ 567.
dc.identifier.citedreferenceMatsushima K, Nagai S. Unraveling the mystery of the hygiene hypothesis through Helicobacter pylori infection. J Clin Invest. 2012; 122: 801 ‐ 804.
dc.identifier.citedreferenceCadena AM, Flynn JL, Fortune SM. The importance of first impressions: Early events in Mycobacterium tuberculosis infection influence outcome. MBio. 2016; 7: e00342 ‐ 00316.
dc.identifier.citedreferenceFerreira AC, Isomoto H, Moriyama M, Fujioka T, Machado JC, Yamaoka Y. Helicobacter and gastric malignancies. Helicobacter. 2008; 13 ( Suppl 1 ): 28 ‐ 34.
dc.identifier.citedreferenceKusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006; 19: 449 ‐ 490.
dc.identifier.citedreferenceDooley CP, Cohen H, Fitzgibbons PL, et al. Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med. 1989; 321: 1562 ‐ 1566.
dc.identifier.citedreferenceLindholm C, Quiding‐Jarbrink M, Lonroth H, Hamlet A, Svennerholm AM. Local cytokine response in Helicobacter pylori ‐infected subjects. Infect Immun. 1998; 66: 5964 ‐ 5971.
dc.identifier.citedreferenceBodger K, Crabtree JE. Helicobacter pylori and gastric inflammation. Br Med Bull. 1998; 54: 139 ‐ 150.
dc.identifier.citedreferenceKivrak Salim D, Sahin M, Koksoy S, Adanir H, Suleymanlar I. Local immune response in Helicobacter pylori infection. Medicine (Baltimore). 2016; 95: e3713.
dc.identifier.citedreferenceKirschner DE, Blaser MJ. The dynamics of Helicobacter pylori infection of the human stomach. J Theor Biol. 1995; 176: 281 ‐ 290.
dc.identifier.citedreferenceBlaser MJ, Kirschner D. Dynamics of Helicobacter pylori colonization in relation to the host response. Proc Natl Acad Sci USA. 1999; 96: 8359 ‐ 8364.
dc.identifier.citedreferenceParsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut. 1997; 40: 297 ‐ 301.
dc.identifier.citedreferenceBagheri N, Shirzad H, Elahi S, et al. Downregulated regulatory T cell function is associated with increased peptic ulcer in Helicobacter pylori ‐infection. Microb Pathog. 2017; 110: 165 ‐ 175.
dc.identifier.citedreferenceKern KB, Nelson JR, Norman SA, Milander MM, Hilwig RW. Oxygenation and ventilation during cardiopulmonary resuscitation utilizing continuous oxygen delivery via a modified pharyngeal‐tracheal lumened airway. Chest. 1992; 101: 522 ‐ 529.
dc.identifier.citedreferenceLarussa T, Leone I, Suraci E, Imeneo M, Luzza F. Helicobacter pylori and T helper cells: Mechanisms of immune escape and tolerance. J Immunol Res. 2015; 2015: 981328.
dc.identifier.citedreferenceChen MG. Progress and problems in schistosomiasis control in China. Trop Med Parasitol. 1989; 40: 174 ‐ 176.
dc.identifier.citedreferenceCarbo A, Bassaganya‐Riera J, Pedragosa M, et al. Predictive computational modeling of the mucosal immune responses during Helicobacter pylori infection. PLoS ONE. 2013; 8: e73365.
dc.identifier.citedreferenceSriskandan S, Altmann DM. The immunology of sepsis. J Pathol. 2008; 214: 211 ‐ 223.
dc.identifier.citedreferenceBone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992; 101: 1644 ‐ 1655.
dc.identifier.citedreferenceCohen J. The immunopathogenesis of sepsis. Nature. 2002; 420: 885 ‐ 891.
dc.identifier.citedreferenceSchulte W, Bernhagen J, Bucala R. Cytokines in sepsis: Potent immunoregulators and potential therapeutic targets–an updated view. Mediators Inflamm. 2013; 2013: 165974.
dc.identifier.citedreferenceVodovotz Y, Billiar TR. In silico modeling: Methods and applications to trauma and sepsis. Crit Care Med. 2013; 41: 2008 ‐ 2014.
dc.identifier.citedreferenceYang H, Lee EK, Wu CJ, Shi Z, Ben‐Arieh D, Simpson SQ. Mathematical modeling of innate immunity responses of sepsis: Modeling and computational studies. In: Yang H, Lee EK, eds. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement. 1 st ed. Hoboken, NJ: John Wiley & Sons, Inc; 2016: 221 ‐ 259.
dc.identifier.citedreferenceAn G. In silico experiments of existing and hypothetical cytokine‐directed clinical trials using agent‐based modeling. Crit Care Med. 2004; 32: 2050 ‐ 2060.
dc.identifier.citedreferenceDelano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long‐term outcome. Immunol Rev. 2016; 274: 330 ‐ 353.
dc.identifier.citedreferenceHotchkiss RS, Monneret G, Payen D. Sepsis‐induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013; 13: 862 ‐ 874.
dc.identifier.citedreferenceDelano MJ, Moldawer LL. Magic bullets and surrogate biomarkers circa 2009. Crit Care Med. 2009; 37: 1796 ‐ 1798.
dc.identifier.citedreferenceBosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol. 2013; 34: 129 ‐ 136.
dc.identifier.citedreferenceHutchins NA, Unsinger J, Hotchkiss RS, Ayala A. The new normal: Immunomodulatory agents against sepsis immune suppression. Trends Mol Med. 2014; 20: 224 ‐ 233.
dc.identifier.citedreferenceLuan YY, Dong N, Xie M, Xiao XZ, Yao YM. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interferon Cytokine Res. 2014; 34: 2 ‐ 15.
dc.identifier.citedreferenceRimmele T, Payen D, Cantaluppi V, et al. Immune cell phenotype and function in sepsis. Shock. 2016; 45: 282 ‐ 291.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.