Show simple item record

Effects of hydroxyurea on CNV induction in the mouse germline

dc.contributor.authorArlt, Martin F.
dc.contributor.authorRajendran, Sountharia
dc.contributor.authorHolmes, Sandra N.
dc.contributor.authorWang, Kathleen
dc.contributor.authorBergin, Ingrid L.
dc.contributor.authorAhmed, Samreen
dc.contributor.authorWilson, Thomas E.
dc.contributor.authorGlover, Thomas W.
dc.date.accessioned2018-11-20T15:35:14Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationArlt, Martin F.; Rajendran, Sountharia; Holmes, Sandra N.; Wang, Kathleen; Bergin, Ingrid L.; Ahmed, Samreen; Wilson, Thomas E.; Glover, Thomas W. (2018). "Effects of hydroxyurea on CNV induction in the mouse germline." Environmental and Molecular Mutagenesis 59(8): 698-714.
dc.identifier.issn0893-6692
dc.identifier.issn1098-2280
dc.identifier.urihttps://hdl.handle.net/2027.42/146452
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercopy number variant
dc.subject.otherhydroxyurea
dc.subject.othergermline
dc.subject.othermutagenesis
dc.subject.otherenvironmental
dc.titleEffects of hydroxyurea on CNV induction in the mouse germline
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146452/1/em22233.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146452/2/em22233_am.pdf
dc.identifier.doi10.1002/em.22233
dc.identifier.sourceEnvironmental and Molecular Mutagenesis
dc.identifier.citedreferenceRich KA, De Kretser DM. 1977. Effect of differing degrees of destruction of the rat seminiferous epithelium on levels of serum follicle stimulating hormone and androgen binding protein. Endocrinology 101: 959 – 968.
dc.identifier.citedreferenceArlt MF, Mulle JG, Schaibley VM, Ragland RL, Durkin SG, Warren ST, Glover TW. 2009. Replication stress induces genome‐wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am J Hum Genet 84: 339 – 350.
dc.identifier.citedreferenceArlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW. 2012. De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4‐dependent nonhomologous end joining. PLoS Genet 8: e1002981.
dc.identifier.citedreferenceArlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW. 2014. Copy number variants are produced in response to low‐dose ionizing radiation in cultured cells. Environ Mol Mutagen 55: 103 – 113.
dc.identifier.citedreferenceHastings PJ, Ira G, Lupski JR. 2009. A microhomology‐mediated break‐induced replication model for the origin of human copy number variation. PLoS Genet 5: e1000327.
dc.identifier.citedreferenceConrad DF, Bird C, Blackburne B, Lindsay S, Mamanova L, Lee C, Turner DJ, Hurles ME. 2010a. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet 42: 385 – 391.
dc.identifier.citedreferenceConrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, et al. 2010b. Origins and functional impact of copy number variation in the human genome. Nature 464: 704 – 712.
dc.identifier.citedreferenceArlt MF, Ozdemir AC, Birkeland SR, Lyons RH Jr, Glover TW, Wilson TE. 2011a. Comparison of constitutional and replication stress‐induced genome structural variation by SNP array and mate‐pair sequencing. Genetics 187: 675 – 683.
dc.identifier.citedreferenceO’Connell J, Schulz‐Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. 2015. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics 31: 2035 – 2037.
dc.identifier.citedreferenceLi H, Durbin R. 2010. Fast and accurate long‐read alignment with Burrows‐Wheeler transform. Bioinformatics 26: 589 – 595.
dc.identifier.citedreferenceKorbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, et al. 2007. Paired‐end mapping reveals extensive structural variation in the human genome. Science 318: 420 – 426.
dc.identifier.citedreferenceKeane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, et al. 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289 – 294.
dc.identifier.citedreferenceTruett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. 2000. Preparation of PCR‐quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29: 52 – 54.
dc.identifier.citedreferenceHayashi M, Morita T, Kodama Y, Sofuni T, Ishidate M Jr. 1990. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange‐coated slides. Mutat Res 245: 245 – 249.
dc.identifier.citedreferenceEdgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207 – 210.
dc.identifier.citedreferenceLeinonen R, Sugawara H, Shumway M and International Nucleotide Sequence Database C. 2011. The sequence read archive. Nucleic Acids Res 39: D19 – D21.
dc.identifier.citedreferenceGriswold MD. 2016. Spermatogenesis: The Commitment to Meiosis. Physiol Rev 96: 1 – 17.
dc.identifier.citedreferenceWiger R, Hongslo JK, Evenson DP, De Angelis P, Schwarze PE, Holme JA. 1995. Effects of acetaminophen and hydroxyurea on spermatogenesis and sperm chromatin structure in laboratory mice. Reprod Toxicol 9: 21 – 33.
dc.identifier.citedreferenceRussell LB, Saylors CL. 1961. Spontaneous and induced abnormal sex‐chromosome number in the mouse. Genetics 46: 1.
dc.identifier.citedreferenceBerthaut I, Guignedoux G, Kirsch‐Noir F, de Larouziere V, Ravel C, Bachir D, Galacteros F, Ancel PY, Kunstmann JM, Levy L, et al. 2008. Influence of sickle cell disease and treatment with hydroxyurea on sperm parameters and fertility of human males. Haematologica 93: 988 – 993.
dc.identifier.citedreferenceIyamu WE, Lian L, Asakura T. 2001. Pharmacokinetic profile of the anti‐sickling hydroxyurea in wild‐type and transgenic sickle cell mice. Chemotherapy 47: 270 – 278.
dc.identifier.citedreferenceNewman EM, Carroll M, Akman SA, Chow W, Coluzzi P, Hamasaki V, Leong LA, Margolin KA, Morgan RJ, Raschko JW, et al. 1997. Pharmacokinetics and toxicity of 120‐hour continuous‐infusion hydroxyurea in patients with advanced solid tumors. Cancer Chemother Pharmacol 39: 254 – 258.
dc.identifier.citedreferenceItsara A, Wu H, Smith JD, Nickerson DA, Romieu I, London SJ, Eichler EE. 2010. De novo rates and selection of large copy number variation. Genome Res 20: 1469 – 1481.
dc.identifier.citedreferenceZhang H, Freudenreich CH. 2007. An AT‐rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27: 367 – 379.
dc.identifier.citedreferenceTaft RA, Davisson M, Wiles MV. 2006. Know thy mouse. Trends Genet 22: 649 – 653.
dc.identifier.citedreferenceO’Brien JM, Beal MA, Yauk CL, Marchetti F. 2016. Next generation sequencing of benzo(a)pyrene‐induced lacZ mutants identifies a germ cell‐specific mutation spectrum. Sci Rep 6: 36743.
dc.identifier.citedreferenceWilson TE, Arlt MF, Park SH, Rajendran S, Paulsen M, Ljungman M, Glover TW. 2015. Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res 25: 189 – 200.
dc.identifier.citedreferenceAdewoye AB, Lindsay SJ, Dubrova YE, Hurles ME. 2015. The genome‐wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat Commun 6: 6684.
dc.identifier.citedreferenceLopez C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA. 2010. Mechanisms of genetically‐based resistance to malaria. Gene 467: 1 – 12.
dc.identifier.citedreferenceBonds DR. 2005. Three decades of innovation in the management of sickle cell disease: the road to understanding the sickle cell disease clinical phenotype. Blood Rev 19: 99 – 110.
dc.identifier.citedreferenceAlgiraigri AH, Kassam A. 2017. Hydroxyurea for hemoglobin E/beta‐thalassemia: a systematic review and meta‐analysis. Int J Hematol 106: 748 – 756.
dc.identifier.citedreferenceMadaan K, Kaushik D, Verma T. 2012. Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther 12: 19 – 29.
dc.identifier.citedreferenceSteinberg MH, McCarthy WF, Castro O, Ballas SK, Armstrong FD, Smith W, Ataga K, Swerdlow P, Kutlar A, DeCastro L, et al., Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell A and Follow‐Up MSHP. 2010. The risks and benefits of long‐term use of hydroxyurea in sickle cell anemia: A 17.5 year follow‐up. Am J Hematol 85: 403 – 408.
dc.identifier.citedreferenceWare RE, Aygun B. 2009. Advances in the use of hydroxyurea. Hematology Am Soc Hematol Educ Program 2009: 62 – 69.
dc.identifier.citedreferenceCharache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP, Bonds DR. 1995. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 332: 1317 – 1322.
dc.identifier.citedreferenceAgrawal RK, Patel RK, Shah V, Nainiwal L, Trivedi B. 2014. Hydroxyurea in sickle cell disease: drug review. Indian J Hematol Blood Transfus 30: 91 – 96.
dc.identifier.citedreferenceModebe O, Ezeh UO. 1995. Effect of age on testicular function in adult males with sickle cell anemia. Fertil Steril 63: 907 – 912.
dc.identifier.citedreferenceKiladjian JJ, Rain JD, Bernard JF, Briere J, Chomienne C, Fenaux P. 2006. Long‐term incidence of hematological evolution in three French prospective studies of hydroxyurea and pipobroman in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost 32: 417 – 421.
dc.identifier.citedreferenceMizutani S, Kuroda J, Shimizu D, Horiike S, Taniwaki M. 2010. Emergence of chronic myelogenous leukemia during treatment for essential thrombocythemia. Int J Hematol 91: 516 – 521.
dc.identifier.citedreferenceWeinfeld A, Swolin B, Westin J. 1994. Acute leukaemia after hydroxyurea therapy in polycythaemia vera and allied disorders: prospective study of efficacy and leukaemogenicity with therapeutic implications. Eur J Haematol 52: 134 – 139.
dc.identifier.citedreferenceFlanagan JM, Howard TA, Mortier N, Avlasevich SL, Smeltzer MP, Wu S, Dertinger SD, Ware RE. 2010. Assessment of genotoxicity associated with hydroxyurea therapy in children with sickle cell anemia. Mutat Res 698: 38 – 42.
dc.identifier.citedreferenceFriedrisch JR, Pra D, Maluf SW, Bittar CM, Mergener M, Pollo T, Kayser M, da Silva MA, Henriques JA, da Rocha Silla LM. 2008. DNA damage in blood leukocytes of individuals with sickle cell disease treated with hydroxyurea. Mutat Res 649: 213 – 220.
dc.identifier.citedreferenceArlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW. 2011b. Hydroxyurea induces de novo copy number variants in human cells. Proc Natl Acad Sci USA 108: 17360 – 17365.
dc.identifier.citedreferenceSudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Hsi‐Yang Fritz M, et al. 2015. An integrated map of structural variation in 2,504 human genomes. Nature 526: 75 – 81.
dc.identifier.citedreferenceLee C, Scherer SW. 2010. The clinical context of copy number variation in the human genome. Expert Rev Mol Med 12: e8.
dc.identifier.citedreferenceZhang F, Gu W, Hurles ME, Lupski JR. 2009. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10: 451 – 481.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.