Show simple item record

Unexpectedly Strong Auger Recombination in Halide Perovskites

dc.contributor.authorShen, Jimmy‐xuan
dc.contributor.authorZhang, Xie
dc.contributor.authorDas, Suvadip
dc.contributor.authorKioupakis, Emmanouil
dc.contributor.authorVan de Walle, Chris G.
dc.date.accessioned2018-11-20T15:35:17Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationShen, Jimmy‐xuan ; Zhang, Xie; Das, Suvadip; Kioupakis, Emmanouil; Van de Walle, Chris G. (2018). "Unexpectedly Strong Auger Recombination in Halide Perovskites." Advanced Energy Materials 8(30): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/146455
dc.description.abstractThe emergence of halide perovskites for photovoltaic applications has triggered great interest in these materials for solidâ state light emission. Higher order electronâ hole recombination processes can critically affect the efficiency of such devices. In the present work, the Auger recombination coefficients are computed in the prototypical halide perovskite, CH3NH3PbI3 (MAPbI3), using firstâ principles calculations. It is demonstrated that Auger recombination is responsible for the exceptionally high thirdâ order recombination coefficient observed in experiment. The large Auger coefficient is attributed to a coincidental resonance between the bandgap and interband transitions to a complex of higherâ lying conduction bands. Additionally, it is found that the distortions of PbI6 octahedra contribute significantly to the high Auger coefficient, offering potential avenues for materials design.The unexpectedly high thirdâ order recombination coefficient in halide perovskites is identified to stem from Auger recombination. Firstâ principles calculations show that the large Auger coefficient originates from a coincidental resonance as well as from distortions in the metalâ halide lattice. These insights point to avenues for improved materials design.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhalide perovskite
dc.subject.otherlightâ emitting diode
dc.subject.otherDFT calculations
dc.subject.otherAuger recombination
dc.titleUnexpectedly Strong Auger Recombination in Halide Perovskites
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146455/1/aenm201801027_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146455/2/aenm201801027.pdf
dc.identifier.doi10.1002/aenm.201801027
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceM. R. Filip, C. Verdi, F. Giustino, J. Phys. Chem. C 2015, 119, 25209.
dc.identifier.citedreferenceY. Yang, M. Yang, Z. Li, R. Crisp, K. Zhu, M. C. Beard, J. Phys. Chem. Lett. 2015, 6, 4688.
dc.identifier.citedreferenceJ. M. Richter, M. Abdiâ Jalebi, A. Sadhanala, M. Tabachnyk, J. P. Rivett, L. M. Pazosâ Outón, K. C. Gödel, M. Price, F. Deschler, R. H. Friend, Nat. Commun. 2016, 7, 13941.
dc.identifier.citedreferenceK. A. Bulashevich, S. Yu. Karpov, Phys. Status Solidi C 2008, 5, 2066.
dc.identifier.citedreferenceJ. Piprek, Phys. Status Solidi A 2010, 207, 2217.
dc.identifier.citedreferenceJ. Even, L. Pedesseau, J.â M. Jancu, C. Katan, J. Phys. Chem. Lett. 2013, 4, 2999.
dc.identifier.citedreferenceE. Kioupakis, D. Steiauf, P. Rinke, K. T. Delaney, C. G. Van de Walle, Phys. Rev. B 2015, 92, 035207.
dc.identifier.citedreferenceP. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
dc.identifier.citedreferenceW. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
dc.identifier.citedreferenceP. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martinâ Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Matter 2009, 21, 395502.
dc.identifier.citedreferenceW. Gao, X. Gao, T. A. Abtew, Y.â Y. Sun, S. Zhang, P. Zhang, Phys. Rev. B 2016, 93, 085202.
dc.identifier.citedreferenceM. S. Hybertsen, S. G. Louie, Phys. Rev. B 1986, 34, 2920.
dc.identifier.citedreferenceA. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoyâ Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, P. R. F. Barnes, Nanoscale 2016, 8, 6317.
dc.identifier.citedreferenceM. T. Weller, O. J. Weber, P. F. Henry, A. M. Di Pumpo, T. C. Hansen, Chem. Commun. 2015, 51, 4180.
dc.identifier.citedreferenceX. Zhang, Q. Liu, J.â W. Luo, A. J. Freeman, A. Zunger, Nat. Phys. 2014, 10, 387.
dc.identifier.citedreferenceC. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584.
dc.identifier.citedreferenceF. Brivio, K. T. Butler, A. Walsh, M. van Schilfgaarde, Phys. Rev. B 2014, 89, 155204.
dc.identifier.citedreferenceD. Steiauf, E. Kioupakis, C. G. Van de Walle, ACS Photonics 2014, 1, 643.
dc.identifier.citedreferenceI. P. Marko, Z. Batool, K. Hild, S. R. Jin, N. Hossain, T. J. C. Hosea, J. P. Petropoulos, Y. Zhong, P. B. Dongmo, J. M. O. Zide, S. J. Sweeney, Appl. Phys. Lett. 2012, 101, 221108.
dc.identifier.citedreferenceM. Kepenekian, J. Even, J. Phys. Chem. Lett. 2017, 8, 3362.
dc.identifier.citedreferenceL. Leppert, S. E. Reyesâ Lillo, J. B. Neaton, J. Phys. Chem. Lett. 2016, 7, 3683.
dc.identifier.citedreferenceJ.â H. Lee, N. C. Bristowe, J. H. Lee, S.â H. Lee, P. D. Bristowe, A. K. Cheetham, H. M. Jang, Chem. Mater. 2016, 28, 4259.
dc.identifier.citedreferenceK. Robinson, G. V. Gibbs, P. H. Ribbe, Science 1971, 172, 567.
dc.identifier.citedreferenceV. M. Goldschmidt, Naturwissenschaften 1926, 14, 477.
dc.identifier.citedreferenceA. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.
dc.identifier.citedreferenceX. Zhang, J.â X. Shen, W. Wang, C. G. Van de Walle, ACS Energy Lett. 2018, 3, 2329.
dc.identifier.citedreferenceZ. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.â W. Koh, G. D. Scholes, B. P. Rand, Nat. Photonics 2017, 11, 108.
dc.identifier.citedreferenceA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
dc.identifier.citedreferenceH. Zhou, Q. Chen, G. Li, S. Luo, T.â B. Song, H.â S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
dc.identifier.citedreferenceN. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
dc.identifier.citedreferenceO. D. Miller, E. Yablonovitch, S. R. Kurtz, IEEE J. Photovoltaics 2012, 2, 303.
dc.identifier.citedreferenceS. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.
dc.identifier.citedreferenceS. Adjokatse, H.â H. Fang, M. A. Loi, Mater. Today 2017, 20, 413.
dc.identifier.citedreferenceS. P. DenBaars, Solid State Luminescence, Springer, Dordrecht, The Netherlands 1993.
dc.identifier.citedreferenceJ. Fu, Q. Xu, G. Han, B. Wu, C. H. A. Huan, M. L. Leek, T. C. Sum, Nat. Commun. 2017, 8, 1300.
dc.identifier.citedreferenceR. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, L. M. Herz, Adv. Funct. Mater. 2015, 25, 6218.
dc.identifier.citedreferenceW. Zou, R. Li, S. Zhang, Y. Liu, N. Wang, Y. Cao, Y. Miao, M. Xu, Q. Guo, D. Di, L. Zhang, C. Yi, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Commun. 2018, 9, 608.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.