Show simple item record

Using Sensor Data to Dynamically Map Large‐Scale Models to Site‐Scale Forecasts: A Case Study Using the National Water Model

dc.contributor.authorFries, Kevin J.
dc.contributor.authorKerkez, Branko
dc.date.accessioned2018-11-20T15:35:18Z
dc.date.available2019-10-01T16:02:11Zen
dc.date.issued2018-08
dc.identifier.citationFries, Kevin J.; Kerkez, Branko (2018). "Using Sensor Data to Dynamically Map Large‐Scale Models to Site‐Scale Forecasts: A Case Study Using the National Water Model." Water Resources Research 54(8): 5636-5653.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/146456
dc.description.abstractThere has been an explosive growth in the ability to model large water systems. While these models are effective at routing water across massive scales, they do not yet forecast the street‐level information desired by local decision makers. Simultaneously, the increasing affordability of sensors has made it possible for even small communities to measure the state of their watersheds. However, these real‐time measurements are often not attached to a predictive model, thus making them less useful for applications like flood warnings. In this paper, we ask the question: how can highly localized forecasts be generated by fusing site‐scale sensor measurements with outputs from large‐scale models? Rather than altering the larger physical model, our approach uses the outputs of the unmodified model as the inputs to a dynamical system. To evaluate the approach, a case study is carried out across the U.S. state of Iowa using publicly available measurements from over 180 water level sensors and outputs from the National Water Model. The approach performs well across a third of the studied sites, as quantified by a high normalized root mean squared error. A performance classification is carried out based on Principal Component Analysis and Random Forests. We discuss how these results will enable stakeholders with local measurements to quickly benefit from large‐scale models without needing to run or modify the models themselves. The results are also placed into a broader sensor‐placement context to provide guidance on how investments into local measurements can be made to maximize predictive benefits.Key PointsApproach to dynamically map large‐scale model forecasts to site‐scale prediction using local sensor dataSuccessful case study using publicly available outputs of National Water Model and 180 water level sensorsPerformance analysis, generalizability of approach to other data and models, and open‐sourced software implementation
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherData Driven Modeling
dc.subject.otherTransfer Function
dc.subject.otherFlood Forecasting
dc.titleUsing Sensor Data to Dynamically Map Large‐Scale Models to Site‐Scale Forecasts: A Case Study Using the National Water Model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146456/1/wrcr23373.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146456/2/wrcr23373_am.pdf
dc.identifier.doi10.1029/2017WR022498
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferencePerumal, M., Shrestha, K. B., & Chaube, U. ( 2004 ). Reproduction of hysteresis in rating curves. Journal of Hydraulic Engineering, 130 ( 9 ), 870 – 878. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(870 )
dc.identifier.citedreferenceNash, J. ( 1957 ). The form of the instantaneous unit hydrograph, IAHS Publications, 45, 114 – 121.
dc.identifier.citedreferenceNash, J., & Sutcliffe, J. ( 1970 ). River flow forecasting through conceptual models part i: A discussion of principles. Journal of Hydrology, 10 ( 3 ), 282 – 290. https://doi.org/10.1016/0022-1694(70)90255-6
dc.identifier.citedreferenceNational Severe Storms Laboratory ( 2017 ). Multi‐radar/multi‐sensor system (mrms). Norman, OK: National Severe Storms Laboratory.
dc.identifier.citedreferenceOffice of Water Prediction ( 2017 ). The national water model. Tuscaloosa, AL: Office of Water Prediction
dc.identifier.citedreferenceOuyang, Y. ( 2005 ). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39 ( 12 ), 2621 – 2635. https://doi.org/10.1016/j.watres.2005.04.024
dc.identifier.citedreferencePerumal, M., Sahoo, B., Moramarco, T., & Barbetta, S. ( 2009 ). Multilinear Muskingum method for stage‐hydrograph routing in compound channels. Journal of Hydrologic Engineering, 14, 663 – 670.
dc.identifier.citedreferencePetersen‐Overlier, A. ( 2004 ). Accounting for heteroscedasticity in rating curve estimates. Journal of Hydrology, 292 ( 1 ), 173 – 181. https://doi.org/10.1016/j.jhydrol.2003.12.024
dc.identifier.citedreferenceRojas, C., Barenthin Barenthin, M., Welsh, J., & Hjalmarsson, H. ( 2010 ). The cost of complexity in system identification: Frequency function estimation of finite impulse response systems. IEEE Transactions on Automatic Control, 55, 2298 – 2309.
dc.identifier.citedreferenceSahoo, B. ( 2013 ). Field application of the multilinear Muskingum discharge routing method. Water Resources Management, 27 ( 5 ), 1193 – 1205. https://doi.org/10.1007/s11269-012-0228-5
dc.identifier.citedreferenceSouthard, R. E. ( 2013 ). Computed statistics at streamgages, and methods for estimating low‐flow frequency statistics and development of regional regression equations for estimating low‐flow frequency statistics at ungaged locations in Missouri (U. S. Geol. Surv. Sci. Invest. Rep. 2013–5090, 28 p.). Reston, VA: U. S. Geological Survey.
dc.identifier.citedreferenceStrahler, A. N. ( 1957 ). Quantitative analysis of watershed geomorphology, Eos Transactions American Geophysical Union, 38 ( 6 ), 913 – 920. https://doi.org/10.1029/TR038i006p00913
dc.identifier.citedreferenceTiwari, M. K., & Adamowski, J. F. ( 2015 ). Medium‐term urban water demand forecasting with limited data using an ensemble wavelet&—bootstrap machine‐learning approach. Journal of Water Resources Planning and Management, 141 ( 2 ), 04014,053, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000454
dc.identifier.citedreferenceTurnipseed, D. P., & Sauer, V. B. ( 2010 ). Discharge measurements at gaging stations. In U.S. Geological Survey techniques and methods (book 3, chap. A8, 87 p.). Reston, VA: U.S. Geological Survey. Retrieved from http://pubs.usgs.gov/tm/tm3-a8/
dc.identifier.citedreferenceU.S. Geological Survey ( 2017 ). NHDplus high resolution national hydrography dataset watershed boundary dataset. Reston, VA: U.S. Geological Survey.
dc.identifier.citedreferenceWesterberg, I., Guerrero, J.‐L., Seibert, J., Beven, K. J., & Halldin, S. ( 2011 ). Stage‐discharge uncertainty derived with a non‐stationary rating curve in the Choluteca river, Honduras. Hydrological Processes, 25 ( 4 ), 603 – 613. https://doi.org/10.1002/hyp.7848
dc.identifier.citedreferenceWong, B. P., & Kerkez, B. ( 2016 ). Real‐time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505 – 517. https://doi.org/https://doi.org/10.1016/j.envsoft.2016.07.020
dc.identifier.citedreferenceYang, Z., & Han, D. ( 2006 ). Derivation of unit hydrograph using a transfer function approach. Water Resources Research, 42, W01501. https://doi.org/10.1029/2005WR004227,
dc.identifier.citedreferenceZhou, Z. ( 2012 ). Ensemble methods: Foundations and algorithms, Chapman & Hall/CRC data mining and knowledge discovery series. Abingdon, UK: Taylor & Francis.
dc.identifier.citedreferenceHorn, R., & Johnson, C. ( 1990 ). Matrix analysis. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceIowa Flood Center ( 2017 ). IFIS web service. Retrieved from http://ifis.iowafloodcenter.org/ifis/en/ws/
dc.identifier.citedreferenceJavaheri, A., Nabatian, M., Omranian, E., Babbar‐Sebens, M., & Noh, S. J. ( 2018 ). Merging real‐time channel sensor networks with continental‐scale hydrologic models: A data assimilation approach for improving accuracy in flood depth predictions. Hydrology, 5 ( 1 ), 9. https://doi.org/10.3390/hydrology5010009
dc.identifier.citedreferenceAricò, C., Corato, G., Tucciarelli, T., Meftah, M. B., Petrillo, A. F., & Mossa, M. ( 2010 ). Discharge estimation in open channels by means of water level hydrograph analysis. Journal of Hydraulic Research, 48 ( 5 ), 612 – 619. https://doi.org/10.1080/00221686.2010.507352
dc.identifier.citedreferenceBartos, M. D., Wong, B., & Kerkez, B. ( 2017 ). Open storm: A complete framework for sensing and control of urban watersheds. Environmental Science: Water Research & Technology, 4, 346 – 358. https://doi.org/10.1039/C7EW00374A
dc.identifier.citedreferenceBeck, M. B. ( 1987 ). Water quality modeling: A review of the analysis of uncertainty. Water Resources Research, 23 ( 8 ), 1393 – 1442. https://doi.org/10.1029/WR023i008p01393
dc.identifier.citedreferenceBitella, G., Rossi, R., Bochicchio, R., Perniola, M., & Amato, M. ( 2014 ). A novel low‐cost open‐hardware platform for monitoring soil water content and multiple soil‐air‐vegetation parameters. Sensors, 14 ( 10 ), 19,639 – 19,659. https://doi.org/10.3390/s141019639
dc.identifier.citedreferenceBjorck, A. ( 1996 ). Numerical Methods for Least Squares Problems, Philadelphia, PA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611971484
dc.identifier.citedreferenceBlöschl, G., Bárdossy, A., Koutsoyiannis, D., Kundzewicz, Z. W., Littlewood, I., Montanari, A., et al. ( 2014 ). On the future of journal publications in hydrology. Water Resources Research, 50, 2795 – 2797. https://doi.org/10.1002/2014WR015613
dc.identifier.citedreferenceChang, N.‐B., Bai, K., & Chen, C.‐F. ( 2017 ). Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management. Journal of Environmental Management, 201 ( Suppl. C ), 227 – 240. https://doi.org/https://doi.org/10.1016/j.jenvman.2017.06.045
dc.identifier.citedreferenceCluckie, I., & Harpin, R. ( 1982 ). A real‐time simulator of the rainfall‐runoff process. Mathematics and Computers in Simulation, 24 ( 2 ), 131 – 139. https://doi.org/https://doi.org/10.1016/0378-4754(82)90095-7
dc.identifier.citedreferenceDamangir, H., & Abedini, M. ( 2014 ). System identification and subsequent discharge estimation based on level data alone–Gradually varied flow condition. Flow Measurement and Instrumentation, 36, 24 – 31. https://doi.org/https://doi.org/10.1016/j.flowmeasinst.2014.01.002
dc.identifier.citedreferenceDemir, I., & Krajewski, W. F. ( 2013 ). Towards an integrated flood information system: Centralized data access, analysis, and visualization. Environmental Modelling & Software, 50, 77 – 84. https://doi.org/https://doi.org/10.1016/j.envsoft.2013.08.009
dc.identifier.citedreferenceDeza, M., & Deza, E. ( 2009 ). Encyclopedia of distances, encyclopedia of distances. Berlin, Germany: Springer.
dc.identifier.citedreferenceFreund, Y., & Schapire, R. E. ( 1996 ). Experiments with a new boosting algorithm. In International Conference on Machine Learning (Vol. 96, pp. 148 – 156 ). Freund: Morgan Kaufmann.
dc.identifier.citedreferenceFries, K., & Kerkez, B. ( 2017 ). Data for “Using sensor data to dynamically map large‐scale models to site‐scale forecasts: A case study using the National Water Model”. https://doi.org/10.7302/Z2PN93TZ
dc.identifier.citedreferenceGilles, D., Young, N., Schroeder, H., Piotrowski, J., & Chang, Y.‐J. ( 2012 ). Inundation mapping initiatives of the Iowa flood center: Statewide coverage and detailed urban flooding analysis. Water, 4 ( 1 ), 85 – 106.
dc.identifier.citedreferenceHastie, T., Tibshirani, R., & Friedman, J. ( 2001 ). The elements of statistical learning: Data mining, inference, and prediction, Springer series in statistics, Berlin, Germany: Springer.
dc.identifier.citedreferenceHerschy, R. ( 1999 ). Hydrometry: Principles and practice. Hoboken, NJ: Wiley.
dc.identifier.citedreferenceHidayat, H., Vermeulen, B., Sassi, M., Torfs, P., & Hoitink, A. ( 2011 ). Discharge estimation in a backwater affected meandering river. Hydrology and Earth System Sciences, 15, 2717 – 2728.
dc.identifier.citedreferenceHoke, J. E., & Anthes, R. A. ( 1976 ). The initialization of numerical models by a dynamic‐initialization technique. Monthly Weather Review, 104 ( 12 ), 1551 – 1556. https://doi.org/10.1175/1520-0493(1976)104-1551:TIONMB-2.0.CO;2
dc.identifier.citedreferenceJin, N., Ma, R., Lv, Y., Lou, X., & Wei, Q. ( 2010 ). A novel design of water environment monitoring system based on WSN. In 2010 International conference on computer design and applications (Vol. 2, pp. V2–593–V2–597). Institute of Electrical and Electronics Engineers, Inc. https://doi.org/10.1109/ICCDA.2010.5541305
dc.identifier.citedreferenceKarandish, F., & Šimůnek, J. ( 2016 ). A comparison of numerical and machine‐learning modeling of soil water content with limited input data. Journal of Hydrology, 543 ( Part B ), 892 – 909. https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.11.007
dc.identifier.citedreferenceKoltun, G. F. ( 2015 ). An evaluation of the accuracy of modeled and computed streamflow time‐series data for the Ohio river at Hannibal lock and Dam and at a location upstream from Sardis, Ohio (U. S. Geol. Surv. Open‐File Rep. 2015‐1058, 23 p.). Reston, VA: U. S. Geological Survey. https://doi.org/10.3133/ofr20151058
dc.identifier.citedreferenceKrause, P., Boyle, D. P., & Bäse, F. ( 2005 ). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89 – 97.
dc.identifier.citedreferenceKuczera, G. ( 1996 ). Correlated rating curve error in flood frequency inference. Water Resources Research, 32 ( 7 ), 2119 – 2127. https://doi.org/10.1029/96WR00804
dc.identifier.citedreferenceLjung, L. ( 1987 ). System identification: Theory for the user, Prentice‐Hall information and system sciences series. Upper Saddle River, NJ: Prentice‐Hall.
dc.identifier.citedreferenceLuenberger, D. ( 1979 ). Introduction to dynamic systems: Theory, models, and applications. Hoboken, NJ: Wiley.
dc.identifier.citedreferenceMoradkhani, H., Hsu, K.‐L., Gupta, H., & Sorooshian, S. ( 2005 ). Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resources Research, 41, W05012. https://doi.org/10.1029/2004WR003604
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.