Show simple item record

Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm

dc.contributor.authorIeda, A.
dc.contributor.authorNishimura, Y.
dc.contributor.authorMiyashita, Y.
dc.contributor.authorAngelopoulos, V.
dc.contributor.authorRunov, A.
dc.contributor.authorNagai, T.
dc.contributor.authorFrey, H. U.
dc.contributor.authorFairfield, D. H.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorVanhamäki, H.
dc.contributor.authorUchino, H.
dc.contributor.authorFujii, R.
dc.contributor.authorMiyoshi, Y.
dc.contributor.authorMachida, S.
dc.date.accessioned2018-11-20T15:35:25Z
dc.date.available2018-11-20T15:35:25Z
dc.date.issued2016-05
dc.identifier.citationIeda, A.; Nishimura, Y.; Miyashita, Y.; Angelopoulos, V.; Runov, A.; Nagai, T.; Frey, H. U.; Fairfield, D. H.; Slavin, J. A.; Vanhamäki, H. ; Uchino, H.; Fujii, R.; Miyoshi, Y.; Machida, S. (2016). "Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm." Journal of Geophysical Research: Space Physics 121(5): 4548-4568.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/146463
dc.description.abstractAuroral stepwise poleward expansions were clarified by investigating a multiple‐onset substorm that occurred on 27 February 2009. Five successive auroral brightenings were identified in all‐sky images, occurring at approximately 10 min intervals. The first brightening was a faint precursor. The second brightening had a wide longitude; thus, it represented the Akasofu substorm onset. Other brightenings expanded poleward; thus, they were interpreted to be auroral breakups. These breakups occurred stepwise; that is, later breakups were initiated at higher latitudes. Corresponding reconnection signatures were studied using Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations between 8 and 24 RE down the magnetotail. The Akasofu substorm onset was not accompanied by a clear reconnection signature in the tail. In contrast, the three subsequent auroral breakups occurred simultaneously (within a few minutes) with three successive fast flows at 24 RE; thus, these were interpreted to be associated with impulsive reconnection episodes. These three fast flows consisted of a tailward flow and two subsequent earthward flows. The flow reversal at the second breakup indicated that a tailward retreat of the near‐Earth reconnection site occurred during the substorm expansion phase. In addition, the earthward flow at the third breakup was consistent with the classic tailward retreat near the end of the expansion phase; therefore, the tailward retreat is likely to have occurred in a stepwise manner. We interpreted the stepwise characteristics of the tailward retreat and poleward expansion to be potentially associated by a stepwise magnetic flux pileup.Key PointsAuroral stepwise poleward expansions were associated with reconnection stepwise tailward retreatThis spatially stepwise association is consequence of magnetic flux pileupThe stepwise association resolved objections to the Hones poleward leap concept
dc.publisherWiley Periodicals, Inc.
dc.publisherMagnetospheric Particles and Fields
dc.subject.otherplasmoid
dc.subject.othersubstorm
dc.subject.othermagnetotail
dc.subject.otheraurora
dc.subject.otherauroral breakup
dc.subject.othermagnetic reconnection
dc.titleStepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146463/1/jgra52608.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146463/2/jgra52608_am.pdf
dc.identifier.doi10.1002/2015JA022244
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceNosé, M., et al. ( 2012 ), Wp index: A new substorm index derived from high‐resolution geomagnetic field data at low latitude, Space Weather, 10, S08002, doi: 10.1029/2012SW000785.
dc.identifier.citedreferenceNagai, T., et al. ( 1998 ), Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations, J. Geophys. Res., 103 ( A3 ), 4419 – 4440, doi: 10.1029/97JA02190.
dc.identifier.citedreferenceNagai, T., M. Fujimoto, R. Nakamura, W. Baumjohann, A. Ieda, I. Shinohara, S. Machida, Y. Saito, and T. Mukai ( 2005 ), Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail, J. Geophys. Res., 110, A09208, doi: 10.1029/2005JA011207.
dc.identifier.citedreferenceNagai, T., I. Shinohara, M. Fujimoto, A. Matsuoka, Y. Saito, and T. Mukai ( 2011 ), Construction of magnetic reconnection in the near‐Earth magnetotail with Geotail, J. Geophys. Res., 116, A04222, doi: 10.1029/2010JA016283.
dc.identifier.citedreferenceNakamura, R., W. Baumjohann, M. Brittnacher, V. A. Sergeev, M. Kubyshkina, T. Mukai, and K. Liou ( 2001 ), Flow bursts and auroral activations: Onset timing and foot point location, J. Geophys. Res., 106 ( A6 ), 10,777 – 10,789, doi: 10.1029/2000JA000249.
dc.identifier.citedreferenceNakamura, R., et al. ( 2011 ), Flux transport, dipolarization, and current sheet evolution during a double‐onset substorm, J. Geophys. Res., 116, A00I36, doi: 10.1029/2010JA015865.
dc.identifier.citedreferenceNishida, A., and N. Nagayama ( 1973 ), Synoptic survey for neutral line in magnetotail during substorm expansion phase, J. Geophys. Res., 78 ( 19 ), 3782 – 3798, doi: 10.1029/JA078i019p03782.
dc.identifier.citedreferenceNishida, A., M. Scholer, T. Terasawa, S. J. Bame, G. Gloeckler, E. J. Smith, and R. D. Zwickl ( 1986 ), Quasi‐stagnant plasmoid in the middle tail: A new preexpansion phase phenomenon, J. Geophys. Res., 91 ( A4 ), 4245 – 4255, doi: 10.1029/JA091iA04p04245.
dc.identifier.citedreferenceOhtani, S., R. Yamaguchi, M. Nosé, H. Kawano, M. Engebretson, and K. Yumoto ( 2002 ), Quiet time magnetotail dynamics and their implications for the substorm trigger, J. Geophys. Res., 107 ( A2 ), 1030, doi: 10.1029/2001JA000116.
dc.identifier.citedreferenceOka, M., et al. ( 2011 ), Magnetic reconnection X‐line retreat associated with dipolarization of the Earth’s magnetosphere, Geophys. Res. Lett., 38, L20105, doi: 10.1029/2011GL049350.
dc.identifier.citedreferenceOpgenoorth, H. J., M. A. L. Persson, T. I. Pulkkinen, and R. J. Pellinen ( 1994 ), Recovery phase of magnetospheric substorms and its association with morning‐sector aurora, J. Geophys. Res., 99 ( A3 ), 4115 – 4129, doi: 10.1029/93JA01502.
dc.identifier.citedreferencePu, Z. Y., et al. ( 2010 ), THEMIS observations of substorms on 26 February 2008 initiated by magnetotail reconnection, J. Geophys. Res., 115, A02212, doi: 10.1029/2009JA014217.
dc.identifier.citedreferencePytte, T., R. L. McPherron, M. G. Kivelson, H. I. West, and E. W. Hones ( 1976a ), Multiple‐satellite studies of magnetospheric substorms: Radial dynamics of plasma sheet, J. Geophys. Res., 81 ( 34 ), 5921 – 5933, doi: 10.1029/JA081i034p05921.
dc.identifier.citedreferencePytte, T., R. L. McPherron, and S. Kokubun ( 1976b ), Ground signatures of expansion phase during multiple onset substorms, Planet. Space Sci., 24 ( 12 ), 1115 – 1132, doi: 10.1016/0032‐0633(76)90149‐5.
dc.identifier.citedreferenceRichmond, A. D. ( 1995 ), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoelectr., 47 ( 2 ), 191 – 212.
dc.identifier.citedreferenceRostoker, G. ( 1986 ), Comment on “The poleward leap of the auroral electrojet as seen in auroral images”, J. Geophys. Res., 91 ( A5 ), 5879 – 5880, doi: 10.1029/JA091iA05p05879.
dc.identifier.citedreferenceRostoker, G., S. I. Akasofu, J. Foster, R. A. Greenwald, Y. Kamide, K. Kawasaki, A. T. Y. Lui, R. L. McPherron, and C. T. Russell ( 1980 ), Magnetospheric substorms—Definition and signatures, J. Geophys. Res., 85 ( NA4 ), 1663 – 1668, doi: 10.1029/JA085iA04p01663.
dc.identifier.citedreferenceRussell, C. T. ( 2000 ), How northward turnings of the IMF can lead to substorm expansion onsets, Geophys. Res. Lett., 27 ( 20 ), 3257 – 3259, doi: 10.1029/2000GL011910.
dc.identifier.citedreferenceRussell, C. T., and R. L. McPherron ( 1973 ), The magnetotail and substorms, Space Sci. Rev., 15 ( 2–3 ), 205 – 266.
dc.identifier.citedreferenceRussell, C. T., P. J. Chi, D. J. Dearborn, Y. S. Ge, B. Kuo‐Tiong, J. D. Means, D. R. Pierce, K. M. Rowe, and R. C. Snare ( 2008 ), THEMIS ground‐based magnetometers, Space Sci. Rev., 141 ( 1–4 ), 389 – 412, doi: 10.1007/s11214‐008‐9337‐0.
dc.identifier.citedreferenceSaito, M. H., Y. Miyashita, M. Fujimoto, I. Shinohara, Y. Saito, K. Liou, and T. Mukai ( 2008 ), Ballooning mode waves prior to substorm‐associated dipolarizations: Geotail observations, Geophys. Res. Lett., 35, L07103, doi: 10.1029/2008GL033269.
dc.identifier.citedreferenceSergeev, V. A., and A. G. Yahnin ( 1979 ), Features of auroral bulge expansion, Planet. Space Sci., 27 ( 12 ), 1429 – 1440, doi: 10.1016/0032‐0633(79)90089‐8.
dc.identifier.citedreferenceSergeev, V. A., V. Angelopoulos, and R. Nakamura ( 2012 ), Recent advances in understanding substorm dynamics, Geophys. Res. Lett., 39, L05101, doi: 10.1029/2012GL050859.
dc.identifier.citedreferenceShiokawa, K., W. Baumjohann, and G. Haerendel ( 1997 ), Braking of high‐speed flows in the near‐Earth tail, Geophys. Res. Lett., 24 ( 10 ), 1179 – 1182, doi: 10.1029/97GL01062.
dc.identifier.citedreferenceShiokawa, K., et al. ( 1998 ), High‐speed ion flow, substorm current wedge, and multiple Pi 2 pulsations, J. Geophys. Res., 103 ( A3 ), 4491 – 4507, doi: 10.1029/97JA01680.
dc.identifier.citedreferenceSitnov, M. I., V. G. Merkin, M. Swisdak, T. Motoba, N. Buzulukova, T. E. Moore, B. H. Mauk, and S. Ohtani ( 2014 ), Magnetic reconnection, buoyancy, and flapping motions in magnetotail explosions, J. Geophys. Res. Space Physics, 119, 7151 – 7168, doi: 10.1002/2014JA020205.
dc.identifier.citedreferenceSlavin, J. A., M. F. Smith, E. L. Mazur, D. N. Baker, E. W. Hones, T. Iyemori, and E. W. Greenstadt ( 1993 ), ISEE 3 observations of traveling compression regions in the Earth’s magnetotail, J. Geophys. Res., 98 ( A9 ), 15,425 – 15,446, doi: 10.1029/93JA01467.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2002 ), Simultaneous observations of earthward flow bursts and plasmoid ejection during magnetospheric substorms, J. Geophys. Res., 107 ( A7 ), 1106, doi: 10.1029/2000JA003501.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2003 ), Geotail observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res., 108 ( A1 ), 1015, doi: 10.1029/2002JA009557.
dc.identifier.citedreferenceTsyganenko, N. A., and D. H. Fairfield ( 2004 ), Global shape of the magnetotail current sheet as derived from Geotail and Polar data, J. Geophys. Res., 109 ( A3 ), A03218, doi: 10.1029/2003JA010062.
dc.identifier.citedreferenceTsyganenko, N. A., and D. P. Stern ( 1996 ), Modeling the global magnetic field of the large‐scale Birkeland current systems, J. Geophys. Res., 101 ( A12 ), 27,187 – 27,198, doi: 10.1029/96JA02735.
dc.identifier.citedreferenceUeno, G., S. Machida, T. Mukai, Y. Saito, and A. Nishida ( 1999 ), Distribution of X‐type magnetic neutral lines in the magnetotail with Geotail observations, Geophys. Res. Lett., 26 ( 22 ), 3341 – 3344, doi: 10.1029/1999GL010714.
dc.identifier.citedreferenceUeno, G., S. Ohtani, T. Mukai, Y. Saito, and H. Hayakawa ( 2003 ), Hall current system around the magnetic neutral line in the magnetotail: Statistical study, J. Geophys. Res., 108 ( A9 ), 1347, doi: 10.1029/2002JA009733.
dc.identifier.citedreferenceWiens, R. G., and G. Rostoker ( 1975 ), Characteristics of development of westward electrojet during expansive phase of magnetospheric substorms, J. Geophys. Res., 80 ( 16 ), 2109 – 2128, doi: 10.1029/JA080i016p02109.
dc.identifier.citedreferenceAikio, A. T., T. Pitkanen, A. Kozlovsky, and O. Amm ( 2006 ), Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event, Ann. Geophys., 24 ( 7 ), 1905 – 1917.
dc.identifier.citedreferenceAkasofu, S.‐I. ( 1964 ), The development of the auroral substorm, Planet. Space Sci., 12 ( 4 ), 273 – 282, doi: 10.1016/0032‐0633(64)90151‐5.
dc.identifier.citedreferenceAlexandrova, A., R. Nakamura, V. S. Semenov, and T. K. M. Nakamura ( 2015 ), Motion of reconnection region in the Earth’s magnetotail, Geophys. Res. Lett., 42, 4685 – 4693, doi: 10.1002/2015GL064421.
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ), The THEMIS mission, Space Sci. Rev., 141 ( 1–4 ), 5 – 34, doi: 10.1007/s11214‐008‐9336‐1.
dc.identifier.citedreferenceAngelopoulos, V., et al. ( 1996 ), Tailward progression of magnetotail acceleration centers: Relationship to substorm current wedge, J. Geophys. Res., 101 ( A11 ), 24,599 – 24,619, doi: 10.1029/96JA01665.
dc.identifier.citedreferenceAngelopoulos, V., A. Runov, X. Z. Zhou, D. L. Turner, S. A. Kiehas, S. S. Li, and I. Shinohara ( 2013 ), Electromagnetic energy conversion at reconnection fronts, Science, 341 ( 6153 ), 1478 – 1482, doi: 10.1126/science.1236992.
dc.identifier.citedreferenceAnger, C. D., and J. S. Murphree ( 1976 ), ISIS‐2 Satellite Imagery and Auroral Morphology, pp. 223 – 234, Magnetospheric Particles and Fields, Netherlands.
dc.identifier.citedreferenceArtemyev, A. V., I. Y. Vasko, V. N. Lutsenko, and A. A. Petrukovich ( 2014 ), Formation of the high‐energy ion population in the Earth’s magnetotail: Spacecraft observations and theoretical models, Ann. Geophys., 32 ( 10 ), 1233 – 1246, doi: 10.5194/angeo‐32‐1233‐2014.
dc.identifier.citedreferenceAtkinson, G. ( 1966 ), A theory of polar substorms, J. Geophys. Res., 71 ( 21 ), 5157 – 5164.
dc.identifier.citedreferenceAuster, H. U., et al. ( 2008 ), The THEMIS fluxgate magnetometer, Space Sci. Rev., 141 ( 1–4 ), 235 – 264, doi: 10.1007/s11214‐008‐9365‐9.
dc.identifier.citedreferenceBaker, D. N., R. D. Belian, P. R. Higbie, and E. W. Hones ( 1979 ), High‐energy magnetospheric protons and their dependence on geomagnetic and inter‐planetary conditions, J. Geophys. Res., 84 ( NA12 ), 7138 – 7154, doi: 10.1029/JA084iA12p07138.
dc.identifier.citedreferenceBaker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron ( 1996 ), Neutral line model of substorms: Past results and present view, J. Geophys. Res., 101 ( A6 ), 12,975 – 13,010, doi: 10.1029/95JA03753.
dc.identifier.citedreferenceBaker, D. N., et al. ( 2002 ), Timing of magnetic reconnection initiation during a global magnetospheric substorm onset, Geophys. Res. Lett., 29 ( 24 ), 2190, doi: 10.1029/2002GL015539.
dc.identifier.citedreferenceBaumjohann, W., M. Hesse, S. Kokubun, T. Mukai, T. Nagai, and A. A. Petrukovich ( 1999 ), Substorm dipolarization and recovery, J. Geophys. Res., 104 ( A11 ), 24,995 – 25,000, doi: 10.1029/1999JA900282.
dc.identifier.citedreferenceBirn, J., A. V. Artemyev, D. N. Baker, M. Echim, M. Hoshino, and L. M. Zelenyi ( 2012 ), Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 173 ( 1–4 ), 49 – 102, doi: 10.1007/s11214‐012‐9874‐4.
dc.identifier.citedreferenceCao, X., et al. ( 2012 ), On the retreat of near‐Earth neutral line during substorm expansion phase: A THEMIS case study during the 9 January 2008 substorm, Ann. Geophys., 30 ( 1 ), 143 – 151, doi: 10.5194/angeo‐30‐143‐2012.
dc.identifier.citedreferenceCheng, C. Z., and A. T. Y. Lui ( 1998 ), Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE, Geophys. Res. Lett., 25 ( 21 ), 4091 – 4094, doi: 10.1029/1998GL900093.
dc.identifier.citedreferenceChu, X., R. L. McPherron, T.‐S. Hsu, V. Angelopoulos, Z. Pu, Z. Yao, H. Zhang, and M. Connors ( 2015 ), Magnetic mapping effects of substorm currents leading to auroral poleward expansion and equatorward retreat, J. Geophys. Res. Space Physics, 120, 253 – 265, doi: 10.1002/2014JA020596.
dc.identifier.citedreferenceCoppi, B., G. Laval, and R. Pellat ( 1966 ), Dynamics of geomagnetic tail, Phys. Rev. Lett., 16 ( 26 ), 1207 – 1210, doi: 10.1103/PhysRevLett.16.1207.
dc.identifier.citedreferenceCraven, J. D., and L. A. Frank ( 1987 ), Latitudinal motions of the aurora during substorms, J. Geophys. Res., 92 ( A5 ), 4565 – 4573, doi: 10.1029/JA092iA05p04565.
dc.identifier.citedreferenceDonovan, E., et al. ( 2006 ), The THEMIS all‐sky imaging array—System design and initial results from the prototype imager, J. Atmos. Sol. Terr. Phys., 68 ( 13 ), 1472 – 1487, doi: 10.1016/j.jastp.2005.03.027.
dc.identifier.citedreferenceDrake, J. F., M. Swisdak, K. M. Schoeffler, B. N. Rogers, and S. Kobayashi ( 2006 ), Formation of secondary islands during magnetic reconnection, Geophys. Res. Lett., 33, L13105, doi: 10.1029/2006GL025957.
dc.identifier.citedreferenceEastwood, J. P., et al. ( 2005 ), Observations of multiple X‐line structure in the Earth’s magnetotail current sheet: A Cluster case study, Geophys. Res. Lett., 32, L11105, doi: 10.1029/2005GL022509.
dc.identifier.citedreferenceEastwood, J. P., T. D. Phan, M. Oieroset, and M. A. Shay ( 2010 ), Average properties of the magnetic reconnection ion diffusion region in the Earth’s magnetotail: The 2001–2005 Cluster observations and comparison with simulations, J. Geophys. Res., 115, A08215, doi: 10.1029/2009JA014962.
dc.identifier.citedreferenceElphinstone, R. D., J. S. Murphree, D. J. Hearn, W. Heikkila, M. G. Henderson, L. L. Cogger, and I. Sandahl ( 1993 ), The auroral distribution and its mapping according to substorm phase, J. Atmos. Terr. Phys., 55 ( 14 ), 1741 – 1762, doi: 10.1016/0021‐9169(93)90142‐l.
dc.identifier.citedreferenceElphinstone, R. D., et al. ( 1995 ), The double oval UV auroral distribution, 1. Implications for the mapping of auroral arcs, J. Geophys. Res., 100 ( A7 ), 12,075 – 12,092, doi: 10.1029/95JA00326.
dc.identifier.citedreferenceElphinstone, R. D., J. S. Murphree, and L. L. Cogger ( 1996 ), What is a global auroral substorm?, Rev. Geophys., 34 ( 2 ), 169 – 232, doi: 10.1029/96RG00483.
dc.identifier.citedreferenceFinlay, C. C., et al. ( 2010 ), International geomagnetic reference field: The eleventh generation, Geophys. J. Int., 183 ( 3 ), 1216 – 1230, doi: 10.1111/j.1365‐246X.2010.04804.x.
dc.identifier.citedreferenceHesse, M., and J. Birn ( 1991 ), On dipolarization and its relation to the substorm current wedge, J. Geophys. Res., 96 ( A11 ), 19,417 – 19,426, doi: 10.1029/91JA01953.
dc.identifier.citedreferenceHones, E. W. ( 1979 ), Transient phenomena in the magnetotail and their relation to substorms, Space Sci. Rev., 23 ( 3 ), 393 – 410.
dc.identifier.citedreferenceHones, E. W. ( 1986 ), The poleward leap of the auroral electrojet as seen in auroral images – Reply, J. Geophys. Res., 91 ( A5 ), 5881 – 5884, doi: 10.1029/JA091iA05p05881.
dc.identifier.citedreferenceHones, E. W. ( 1992 ), Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet, in The International Conference on Substorms (ICS‐1), Kiruna, Sweden, 23–27 March 1992, pp. 477 – 483, Eur. Space Agency Spec. Publ., Paris, France.
dc.identifier.citedreferenceHones, E. W., J. R. Asbridge, S. J. Bame, and S. Singer ( 1973 ), Substorm variations of magnetotail plasma sheet from X SM ≈−6 R E to X SM ≈−60 R E, J. Geophys. Res., 78 ( 1 ), 109 – 132, doi: 10.1029/JA078i001p00109.
dc.identifier.citedreferenceHones, E. W., et al. ( 1984 ), Structure of the magnetotail at 220 R E and its response to geomagnetic activity, Geophys. Res. Lett., 11 ( 1 ), 5 – 7, doi: 10.1029/GL011i001p00005.
dc.identifier.citedreferenceHones, E. W., Jr. ( 1976 ), The magnetotail: Its generation and dissipation, Phys. Sol. Planet. Environ., 2, 558 – 571.
dc.identifier.citedreferenceIeda, A., S. Machida, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, and S. Kokubun ( 1998 ), Statistical analysis of the plasmoid evolution with Geotail observations, J. Geophys. Res., 103 ( A3 ), 4453 – 4465.
dc.identifier.citedreferenceIeda, A., D. H. Fairfield, T. Mukai, Y. Saito, S. Kokubun, K. Liou, C. I. Meng, G. K. Parks, and M. J. Brittnacher ( 2001 ), Plasmoid ejection and auroral brightenings, J. Geophys. Res., 106 ( A3 ), 3845 – 3857, doi: 10.1029/1999JA000451.
dc.identifier.citedreferenceIeda, A., et al. ( 2008 ), Longitudinal association between magnetotail reconnection and auroral breakup based on Geotail and Polar observations, J. Geophys. Res., 113, A08207, doi: 10.1029/2008JA013127.
dc.identifier.citedreferenceImada, S., R. Nakamura, P. W. Daly, M. Hoshino, W. Baumjohann, S. Muehlbachler, A. Balogh, and H. Reme ( 2007 ), Energetic electron acceleration in the downstream reconnection outflow region, J. Geophys. Res., 112, A03202, doi: 10.1029/2006JA011847.
dc.identifier.citedreferenceIyemori, T. ( 1990 ), Storm‐time magnetospheric currents inferred from midlatitude geomagnetic‐field variations, J. Geomag. Geoelectr., 42 ( 11 ), 1249 – 1265.
dc.identifier.citedreferenceKadokura, A., A. S. Yukimatu, M. Ejiri, T. Oguti, M. Pinnock, and M. R. Hairston ( 2002 ), Detailed analysis of a substorm event on 6 and 7 June 1989: 1. Growth phase evolution of nightside auroral activities and ionospheric convection toward expansion phase onset, J. Geophys. Res., 107 ( A12 ), 1479, doi: 10.1029/2001JA009127.
dc.identifier.citedreferenceKamide, Y., and S. I. Akasofu ( 1974 ), Latitudinal cross section of the auroral electrojet and its relation to the interplanetary magnetic field polarity, J. Geophys. Res., 79 ( 25 ), 3755 – 3771, doi: 10.1029/JA079i025p03755.
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.
dc.identifier.citedreferenceKisabeth, J. L., and G. Rostoker ( 1971 ), Development of polar electrojet during polar magnetic substorms, J. Geophys. Res., 76 ( 28 ), 6815 – 6828, doi: 10.1029/JA076i028p06815.
dc.identifier.citedreferenceKisabeth, J. L., and G. Rostoker ( 1974 ), Expansive phase of magnetospheric substorms: 1. Development of auroral electrojets and auroral arc configuration during a substorm, J. Geophys. Res., 79 ( 7 ), 972 – 984, doi: 10.1029/JA079i007p00972.
dc.identifier.citedreferenceLiu, Y.‐H., J. Birn, W. Daughton, M. Hesse, and K. Schindler ( 2014 ), Onset of reconnection in the near magnetotail: PIC simulations, J. Geophys. Res. Space Physics, 119, 9773 – 9789, doi: 10.1002/2014JA020492.
dc.identifier.citedreferenceLyons, L. R., Y. Nishimura, B. Gallardo‐Lacourt, Y. Zou, E. Donovan, S. Mende, V. Angelopoulos, J. M. Ruohoniemi, and K. McWilliams ( 2013 ), Westward traveling surges: Sliding along boundary arcs and distinction from onset arc brightening, J. Geophys. Res. Space Physics, 118, 7643 – 7653, doi: 10.1002/2013ja019334.
dc.identifier.citedreferenceMachida, S., Y. Miyashita, A. Ieda, M. Nosé, V. Angelopoulos, and J. P. McFadden ( 2014 ), Statistical visualization of the Earth’s magnetotail and the implied mechanism of substorm triggering based on superposed‐epoch analysis of THEMIS data, Ann. Geophys., 32 ( 2 ), 99 – 111, doi: 10.5194/angeo‐32‐99‐2014.
dc.identifier.citedreferenceMcFadden, J. P., C. W. Carlson, D. Larson, M. Ludlam, R. Abiad, B. Elliott, P. Turin, M. Marckwordt, and V. Angelopoulos ( 2008 ), The THEMIS ESA plasma instrument and in‐flight calibration, Space Sci. Rev., 141 ( 1–4 ), 277 – 302, doi: 10.1007/s11214‐008‐9440‐2.
dc.identifier.citedreferenceMcPherron, R. L. ( 1991 ), Physical processes producing magnetospheric substorms and magnetic storms, in Geomagnetism, vol. 4, edited by J. Jacobs, pp. 594 – 739, Academic Press, London.
dc.identifier.citedreferenceMende, S. B., H. U. Frey, S. P. Geller, and J. H. Doolittle ( 1999 ), Multistation observations of auroras: Polar cap substorms, J. Geophys. Res., 104 ( A2 ), 2333 – 2342, doi: 10.1029/1998JA900084.
dc.identifier.citedreferenceMende, S. B., S. E. Harris, H. U. Frey, V. Angelopoulos, C. T. Russell, E. Donovan, B. Jackel, M. Greffen, and L. M. Peticolas ( 2008 ), The THEMIS array of ground‐based observatories for the study of auroral substorms, Space Sci. Rev., 141 ( 1–4 ), 357 – 387, doi: 10.1007/s11214‐008‐9380‐x.
dc.identifier.citedreferenceMilan, S. E., J. A. Wild, B. Hubert, C. M. Carr, E. A. Lucek, J. M. Bosqued, J. F. Watermann, and J. A. Slavin ( 2006 ), Flux closure during a substorm observed by Cluster, Double Star, IMAGE FUV, SuperDARN, and Greenland magnetometers, Ann. Geophys., 24 ( 2 ), 751 – 767.
dc.identifier.citedreferenceMiyashita, Y., et al. ( 2009 ), A state‐of‐the‐art picture of substorm‐associated evolution of the near‐Earth magnetotail obtained from superposed epoch analysis, J. Geophys. Res., 114, A01211, doi: 10.1029/2008JA013225.
dc.identifier.citedreferenceMoldwin, M. B., and W. J. Hughes ( 1993 ), Geomagnetic substorm association of plasmoids, J. Geophys. Res., 98 ( A1 ), 81 – 88, doi: 10.1029/92JA02153.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.