Show simple item record

Regional Similarities and NOx‐Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States

dc.contributor.authorLiu, Jun
dc.contributor.authorRussell, Lynn M.
dc.contributor.authorRuggeri, Giulia
dc.contributor.authorTakahama, Satoshi
dc.contributor.authorClaflin, Megan S.
dc.contributor.authorZiemann, Paul J.
dc.contributor.authorPye, Havala O. T.
dc.contributor.authorMurphy, Benjamin N.
dc.contributor.authorXu, Lu
dc.contributor.authorNg, Nga L.
dc.contributor.authorMcKinney, Karena A.
dc.contributor.authorBudisulistiorini, Sri Hapsari
dc.contributor.authorBertram, Timothy H.
dc.contributor.authorNenes, Athanasios
dc.contributor.authorSurratt, Jason D.
dc.date.accessioned2018-11-20T15:35:28Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09-27
dc.identifier.citationLiu, Jun; Russell, Lynn M.; Ruggeri, Giulia; Takahama, Satoshi; Claflin, Megan S.; Ziemann, Paul J.; Pye, Havala O. T.; Murphy, Benjamin N.; Xu, Lu; Ng, Nga L.; McKinney, Karena A.; Budisulistiorini, Sri Hapsari; Bertram, Timothy H.; Nenes, Athanasios; Surratt, Jason D. (2018). "Regional Similarities and NOx‐Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States." Journal of Geophysical Research: Atmospheres 123(18): 10,620-10,636.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/146465
dc.description.abstractDuring the 2013 Southern Oxidant and Aerosol Study, Fourier transform infrared spectroscopy (FTIR) and aerosol mass spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15–60% higher at CTR than at LRK, but their time series had moderate correlations (r ~ 0.5). However, NOx had no correlation (r = 0.08) between the two sites with nighttime‐to‐early‐morning peaks 3–10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: fossil fuel combustion‐related organic aerosols, mixed organic aerosols, and biogenic organic aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab‐generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx‐related factor (33% of OM) at CTR but a daytime nitrate‐related factor (28% of OM) at LRK. NOx was correlated with BOA and LO‐OOA for NOx concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 μg/m3 for CTR‐LO‐OOA and 1.0 ± 0.3 μg/m3 for CTR‐BOA additional biogenic OM for each 1 ppb increase of NOx.Key PointsAerosol concentration and composition are largely similar at two different forested sites during summertime in the southeastern United StatesFTIR of ambient biogenic SOA factors are similar to isoprene and monoterpene chamber experiment, supporting NOx‐related oxidation pathwaysNOx increases biogenic SOA by 0.5 ± 0.1 μg/m3 for CTR‐LO‐OOA and 1.0 ± 0.3 μg/m3 for CTR‐BOA for each ppb NOx above 1 ppb at Centreville but not at Look Rock (where NOx was usually below 1 ppb)
dc.publisherSpringer Science+Business Media, LLC, Springer
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraerosol mass spectrometer
dc.subject.otherbiogenic organic aerosol
dc.subject.otherpositive matrix factorization
dc.subject.otherFourier transform infrared spectroscopy
dc.subject.otherNOx
dc.titleRegional Similarities and NOx‐Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/1/jgrd54860-sup-0001-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/2/jgrd54860.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/3/jgrd54860_am.pdf
dc.identifier.doi10.1029/2018JD028491
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceSchwartz, R. E., Russell, L. M., Sjostedt, S. J., Vlasenko, A., Slowik, J. G., Abbatt, J. P. D., et al. ( 2010 ). Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products. Atmospheric Chemistry and Physics, 10 ( 11 ), 5075 – 5088. https://doi.org/10.5194/acp‐10‐5075‐2010
dc.identifier.citedreferenceRobinson, N. H., Hamilton, J. F., Allan, J. D., Langford, B., Oram, D. E., Chen, Q., et al. ( 2011 ). Evidence for a significant proportion of secondary organic aerosol from isoprene above a maritime tropical forest. Atmospheric Chemistry and Physics, 11 ( 3 ), 1039 – 1050. https://doi.org/10.5194/acp‐11‐1039‐2011
dc.identifier.citedreferenceRollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R., et al. ( 2012 ). Evidence for NOx control over nighttime SOA formation. Science, 337 ( 6099 ), 1210 – 1212. https://doi.org/10.1126/science.1221520
dc.identifier.citedreferenceRussell, L. M. ( 2014 ). Carbonaceous particles: Source‐based characterization of their formation, composition, and structures. In K. K. Turekian (Ed.), Treatise on geochemistry ( Second ed., pp. 291 – 316 ). Oxford: Elsevier. doi: https://doi.org/10.1016/B1978–1010–1008‐095975‐095977.000415‐095970
dc.identifier.citedreferenceRussell, L. M., Bahadur, R., Hawkins, L. N., Allan, J., Baumgardner, D., Quinn, P. K., & Bates, T. S. ( 2009 ). Organic aerosol characterization by complementary measurements of chemical bonds and molecular fragments. Atmospheric Environment, 43 ( 38 ), 6100 – 6105. https://doi.org/10.1016/j.atmosenv.2009.09.036
dc.identifier.citedreferenceRussell, L. M., Bahadur, R., & Ziemann, P. J. ( 2011 ). Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. Proceedings of the National Academy of Sciences of the United States of America, 108 ( 9 ), 3516 – 3521. https://doi.org/10.1073/pnas.1006461108
dc.identifier.citedreferenceSaha, P. K., Khlystov, A., Yahya, K., Zhang, Y., Xu, L., Ng, N. L., & Grieshop, A. P. ( 2017 ). Quantifying the volatility of organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 17 ( 1 ), 501 – 520. https://doi.org/10.5194/acp‐17‐501‐2017
dc.identifier.citedreferenceSeinfeld, J. H., & Pandis, S. N. ( 2016 ). Atmospheric chemistry and physics: From air pollution to climate change ( 3rd Edition, 3rd ed., p. 1152 ). New York, New York, NY: Wiley.
dc.identifier.citedreferenceSeok, B., Helmig, D., Ganzeveld, L., Williams, M. W., & Vogel, C. S. ( 2013 ). Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in northern Michigan. Atmospheric Chemistry and Physics, 13 ( 15 ), 7301 – 7320. https://doi.org/10.5194/acp‐13‐7301‐2013
dc.identifier.citedreferenceShilling, J. E., Zaveri, R. A., Fast, J. D., Kleinman, L., Alexander, M. L., Canagaratna, M. R., et al. ( 2013 ). Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmospheric Chemistry and Physics, 13 ( 4 ), 2091 – 2113. https://doi.org/10.5194/acp‐13‐2091‐2013
dc.identifier.citedreferenceShrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., et al. ( 2017 ). Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 55, 509 – 559. https://doi.org/10.1002/2016rg000540
dc.identifier.citedreferenceSlowik, J. G., Brook, J., Chang, R. Y. W., Evans, G. J., Hayden, K., Jeong, C. H., et al. ( 2011 ). Photochemical processing of organic aerosol at nearby continental sites: Contrast between urban plumes and regional aerosol. Atmospheric Chemistry and Physics, 11 ( 6 ), 2991 – 3006. https://doi.org/10.5194/acp‐11‐2991‐2011
dc.identifier.citedreferenceSpracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W., et al. ( 2011 ). Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric Chemistry and Physics, 11 ( 23 ), 12,109 – 12,136. https://doi.org/10.5194/acp‐11‐12109‐2011
dc.identifier.citedreferenceSurratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., et al. ( 2010 ). Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 15 ), 6640 – 6645. https://doi.org/10.1073/pnas.0911114107
dc.identifier.citedreferenceSurratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., & Seinfeld, J. H. ( 2007 ). Effect of acidity on secondary organic aerosol formation from isoprene. Environmental Science & Technology, 41 ( 15 ), 5363 – 5369. https://doi.org/10.1021/es0704176
dc.identifier.citedreferenceSurratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., et al. ( 2006 ). Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. Journal of Physical Chemistry A, 110 ( 31 ), 9665 – 9690. https://doi.org/10.1021/jp061734m
dc.identifier.citedreferenceTakahama, S., Johnson, A., & Russell, L. M. ( 2013 ). Quantification of carboxylic and carbonyl functional groups in organic aerosol infrared absorbance spectra. Aerosol Science and Technology, 47 ( 3 ), 310 – 325. https://doi.org/10.1080/02786826.2012.752065
dc.identifier.citedreferenceTakahama, S., Schwartz, R. E., Russell, L. M., Macdonald, A. M., Sharma, S., & Leaitch, W. R. ( 2011 ). Organic functional groups in aerosol particles from burning and non‐burning forest emissions at a high‐elevation mountain site. Atmospheric Chemistry and Physics, 11 ( 13 ), 6367 – 6386. https://doi.org/10.5194/acp‐11‐6367‐2011
dc.identifier.citedreferenceTaylor, R. ( 1990 ). Interpretation of the correlation‐coefficient—A basic review. Journal of Diagnostic Medical Sonography, 6 ( 1 ), 35 – 39. https://doi.org/10.1177/875647939000600106
dc.identifier.citedreferenceTravis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., et al. ( 2016 ). Why do models overestimate surface ozone in the Southeast United States? Atmospheric Chemistry and Physics, 16 ( 21 ), 13,561 – 13,577. https://doi.org/10.5194/acp‐16‐13561‐2016
dc.identifier.citedreferenceUlbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., & Jimenez, J. L. ( 2009 ). Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9 ( 9 ), 2891 – 2918.
dc.identifier.citedreferenceUsher, C. R., Michel, A. E., & Grassian, V. H. ( 2003 ). Reactions on mineral dust. Chemical Reviews, 103 ( 12 ), 4883 – 4939. https://doi.org/10.1021/cr020657y
dc.identifier.citedreferenceVerma, V., Shafer, M. M., Schauer, J. J., & Sioutas, C. ( 2010 ). Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy‐duty vehicles. Atmospheric Environment, 44 ( 39 ), 5165 – 5173. https://doi.org/10.1016/j.atmosenv.2010.08.052
dc.identifier.citedreferenceWildt, J., Mentel, T. F., Kiendler‐Scharr, A., Hoffmann, T., Andres, S., Ehn, M., et al. ( 2014 ). Suppression of new particle formation from monoterpene oxidation by NOx. Atmospheric Chemistry and Physics, 14 ( 6 ), 2789 – 2804. https://doi.org/10.5194/acp‐14‐2789‐2014
dc.identifier.citedreferenceXie, Y., Paulot, F., Carter, W. P. L., Nolte, C. G., Luecken, D. J., Hutzell, W. T., et al. ( 2013 ). Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmospheric Chemistry and Physics, 13 ( 16 ), 8439 – 8455. https://doi.org/10.5194/acp‐13‐8439‐2013
dc.identifier.citedreferenceXu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., et al. ( 2015 ). Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 1 ), 37 – 42. https://doi.org/10.1073/pnas.1417609112
dc.identifier.citedreferenceXu, L., Kollman, M. S., Song, C., Shilling, J. E., & Ng, N. L. ( 2014 ). Effects of NO x on the volatility of secondary organic aerosol from isoprene photooxidation. Environmental Science & Technology, 48 ( 4 ), 2253 – 2262. https://doi.org/10.1021/es404842g
dc.identifier.citedreferenceXu, L., Middlebrook, A. M., Liao, J., de Gouw, J. A., Guo, H., Weber, R. J., et al. ( 2016 ). Enhanced formation of isoprene‐derived organic aerosol in sulfur‐rich power plant plumes during Southeast Nexus. Journal of Geophysical Research‐Atmospheres, 121, 11,137 – 11,153. https://doi.org/10.1002/2016jd025156
dc.identifier.citedreferenceXu, L., Suresh, S., Guo, H., Weber, R. J., & Ng, N. L. ( 2015 ). Aerosol characterization over the southeastern United States using high‐resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 15 ( 13 ), 7307 – 7336. https://doi.org/10.5194/acp‐15‐7307‐2015
dc.identifier.citedreferenceZhang, H., Yee, L. D., Lee, B. H., Curtis, M. P., Worton, D. R., Isaacman‐VanWertz, G., et al. ( 2018 ). Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences, 115 ( 9 ), 2038 – 2043.
dc.identifier.citedreferenceZhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., & Sun, Y. L. ( 2011 ). Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 401 ( 10 ), 3045 – 3067. https://doi.org/10.1007/s00216‐011‐5355‐y
dc.identifier.citedreferenceZhang, X., Chen, Z. M., Wang, H. L., He, S. Z., & Huang, D. M. ( 2009 ). An important pathway for ozonolysis of alpha‐pinene and beta‐pinene in aqueous phase and its atmospheric implications. Atmospheric Environment, 43 ( 29 ), 4465 – 4471. https://doi.org/10.1016/j.atmosenv.2009.06.028
dc.identifier.citedreferenceZhang, Y. J., et al. ( 2017 ). Limited formation of isoprene epoxydiols‐derived secondary organic aerosol under NOx‐rich environments in Eastern China. Geophysical Research Letters, 44, 2035 – 2043. https://doi.org/10.1002/2016gl072368
dc.identifier.citedreferenceZheng, Y., Unger, N., Hodzic, A., Emmons, L., Knote, C., Tilmes, S., et al. ( 2015 ). Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation. Atmospheric Chemistry and Physics, 15 ( 23 ), 13,487 – 13,506. https://doi.org/10.5194/acp‐15‐13487‐2015
dc.identifier.citedreferenceZiemann, P. J., & Atkinson, R. ( 2012 ). Kinetics, products, and mechanisms of secondary organic aerosol formation. Chemical Society Reviews, 41 ( 19 ), 6582 – 6605. https://doi.org/10.1039/c2cs35122f
dc.identifier.citedreferenceAgarwal, A. K., Gupta, T., Shukla, P. C., & Dhar, A. ( 2015 ). Particulate emissions from biodiesel fuelled CI engines. Energy Conversion and Management, 94, 311 – 330. https://doi.org/10.1016/j.enconman.2014.12.094
dc.identifier.citedreferenceAlghamdi, M. A., Khoder, M., Harrison, R. M., Hyvärinen, A. P., Hussein, T., al Jeelani, H., et al. ( 2014 ). Temporal variations of O‐3 and NO x in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmospheric Environment, 94, 205 – 214. https://doi.org/10.1016/j.atmosenv.2014.03.029
dc.identifier.citedreferenceAllan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N., Jayne, J. T., et al. ( 2003 ). Quantitative sampling using an Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysis (vol 108, art no 4090, 2003). Journal of Geophysical Research, 108 ( D9 ), 4283. https://doi.org/10.1029/2003jd001607
dc.identifier.citedreferenceAllan, J. D., Rami Alfarra, M., Bower, K. N., Williams, P. I., Gallagher, M. W., Jimenez, J. L., et al. ( 2003 ). Quantitative sampling using an Aerodyne aerosol mass spectrometer: 2. Measurements of fine particulate chemical composition in two UK cities (vol 108, art no 4091, 2003). Journal of Geophysical Research, 108 ( D9 ), 4284. https://doi.org/10.1029/2003jd001608
dc.identifier.citedreferenceAtkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., et al. ( 2004 ). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I ‐ gas phase reactions of O‐x, HO x, NO x and SO x species. Atmospheric Chemistry and Physics, 4, 1461 – 1738.
dc.identifier.citedreferenceBahreini, R., Ervens, B., Middlebrook, A. M., Warneke, C., de Gouw, J. A., DeCarlo, P. F., et al. ( 2009 ). Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of Geophysical Research, 114, D00F16. https://doi.org/10.1029/2008jd011493
dc.identifier.citedreferenceBlanchard, C. L., Hidy, G. M., Shaw, S., Baumann, K., & Edgerton, E. S. ( 2016 ). Effects of emission reductions on organic aerosol in the southeastern United States. Atmospheric Chemistry and Physics, 16 ( 1 ), 215 – 238. https://doi.org/10.5194/acp‐16‐215‐2016
dc.identifier.citedreferenceBudisulistiorini, S. H., Baumann, K., Edgerton, E. S., Bairai, S. T., Mueller, S., Shaw, S. L., et al. ( 2016 ). Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia, and Look Rock, Tennessee. Atmospheric Chemistry and Physics, 16 ( 8 ), 5171 – 5189. https://doi.org/10.5194/acp‐16‐5171‐2016
dc.identifier.citedreferenceBudisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Marth, W. J., Baumann, K., Edgerton, E. S., et al. ( 2013 ). Real‐time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atalanta, Georgia, using the Aerodyne Aerosol Chemical Speciation Monitor. Environmental Science & Technology, 47 ( 11 ), 5686 – 5694. https://doi.org/10.1021/es400023n
dc.identifier.citedreferenceBudisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y., Liu, Y. J., et al. ( 2015 ). Examining the effects of anthropogenic emissions on isoprene‐derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmospheric Chemistry and Physics, 15 ( 15 ), 8871 – 8888. https://doi.org/10.5194/acp‐15‐8871‐2015
dc.identifier.citedreferenceBudisulistiorini, S. H., Nenes, A., Carlton, A. G., Surratt, J. D., McNeill, V. F., & Pye, H. O. T. ( 2017 ). Simulating aqueous‐phase isoprene‐epoxydiol (IEPOX) secondary organic aerosol production during the 2013 Southern Oxidant and Aerosol Study (SOAS). Environmental Science & Technology, 51 ( 9 ), 5026 – 5034. https://doi.org/10.1021/acs.est.6b05750
dc.identifier.citedreferenceCarlton, A. G., Pinder, R. W., Bhave, P. V., & Pouliot, G. A. ( 2010 ). To what extent can biogenic SOA be controlled? Environmental Science & Technology, 44 ( 9 ), 3376 – 3380. https://doi.org/10.1021/es903506b
dc.identifier.citedreferenceCerully, K. M., Bougiatioti, A., Hite, J. R., Guo, H., Xu, L., Ng, N. L., et al. ( 2015 ). On the link between hygroscopicity, volatility, and oxidation state of ambient and water‐soluble aerosols in the southeastern United States. Atmospheric Chemistry and Physics, 15 ( 15 ), 8679 – 8694. https://doi.org/10.5194/acp‐15‐8679‐2015
dc.identifier.citedreferenceChen, Q., Farmer, D. K., Rizzo, L. V., Pauliquevis, T., Kuwata, M., Karl, T. G., et al. ( 2015 ). Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE‐08). Atmospheric Chemistry and Physics, 15 ( 7 ), 3687 – 3701. https://doi.org/10.5194/acp‐15‐3687‐2015
dc.identifier.citedreferenceCheung, K. L., Ntziachristos, L., Tzamkiozis, T., Schauer, J. J., Samaras, Z., Moore, K. F., & Sioutas, C. ( 2010 ). Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Science and Technology, 44 ( 7 ), 500 – 513. https://doi.org/10.1080/02786821003758294
dc.identifier.citedreferenceCorrigan, A. L., Russell, L. M., Takahama, S., Äijälä, M., Ehn, M., Junninen, H., et al. ( 2013 ). Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiala, Finland, during HUMPPA‐COPEC 2010. Atmospheric Chemistry and Physics, 13 ( 24 ), 12,233 – 12,256. https://doi.org/10.5194/acp‐13‐12233‐2013
dc.identifier.citedreferenceDavis, R. E., Hayden, B. P., Gay, D. A., Phillips, W. L., & Jones, G. V. ( 1997 ). The North Atlantic subtropical anticyclone. Journal of Climate, 10 ( 4 ), 728 – 744. https://doi.org/10.1175/1520‐0442(1997)010<0728:tnasa>2.0.co;2
dc.identifier.citedreferenceDay, D. A., Liu, S., Russell, L. M., & Ziemann, P. J. ( 2010 ). Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmospheric Environment, 44 ( 16 ), 1970 – 1979. https://doi.org/10.1016/j.atmosenv.2010.02.045
dc.identifier.citedreferencede Sa, S. S., et al. ( 2017 ). Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 17 ( 11 ), 6611 – 6629. https://doi.org/10.5194/acp‐17‐6611‐2017
dc.identifier.citedreferenceDeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., et al. ( 2006 ). Field‐deployable, high‐resolution, time‐of‐flight aerosol mass spectrometer. Analytical Chemistry, 78 ( 24 ), 8281 – 8289. https://doi.org/10.1021/ac061249n
dc.identifier.citedreferenceDevore, J. L., & Berk, K. N. ( 2012 ). Modern mathematical statistics with application, ( Second ed.). New York Dordrecht Heidelberg London: Springer Science+Business Media, LLC, Springer. doi: https://doi.org/10.1007/978‐1‐4614‐0391‐3
dc.identifier.citedreferenceEdwards, P. M., Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., et al. ( 2017 ). Transition from high‐ to low‐NO x control of night‐time oxidation in the southeastern US. Nature Geoscience, 10 ( 7 ), 490−+, doi: https://doi.org/10.1038/ngeo2976 ), 490 – 495.
dc.identifier.citedreferenceEhn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., et al. ( 2014 ). A large source of low‐volatility secondary organic aerosol. Nature, 506 ( 7489 ), 476−+, doi: https://doi.org/10.1038/nature13032 ), 476 – 479.
dc.identifier.citedreferenceGilardoni, S., Liu, S., Takahama, S., Russell, L. M., Allan, J. D., Steinbrecher, R., et al. ( 2009 ). Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmospheric Chemistry and Physics, 9 ( 15 ), 5417 – 5432.
dc.identifier.citedreferenceGuenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. ( 2006 ). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181 – 3210.
dc.identifier.citedreferenceGuenther, X., Jiang, C., Heald, L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. ( 2012 ). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5 ( 6 ), 1471 – 1492. https://doi.org/10.5194/gmd‐5‐1471‐2012
dc.identifier.citedreferenceHallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., et al. ( 2009 ). The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 9 ( 14 ), 5155 – 5236. https://doi.org/10.5194/acp‐9‐5155‐2009
dc.identifier.citedreferenceHawkins, L. N., & Russell, L. M. ( 2010 ). Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires. Atmospheric Environment, 44 ( 34 ), 4142 – 4154. https://doi.org/10.1016/j.atmosenv.2010.07.036
dc.identifier.citedreferenceHoyle, C. R., Boy, M., Donahue, N. M., Fry, J. L., Glasius, M., Guenther, A., et al. ( 2011 ). A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 11 ( 1 ), 321 – 343. https://doi.org/10.5194/acp‐11‐321‐2011
dc.identifier.citedreferenceHu, W. W., Campuzano‐Jost, P., Palm, B. B., Day, D. A., Ortega, A. M., Hayes, P. L., et al. ( 2015 ). Characterization of a real‐time tracer for isoprene epoxydiols‐derived secondary organic aerosol (IEPOX‐SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 15 ( 20 ), 11,807 – 11,833. https://doi.org/10.5194/acp‐15‐11807‐2015
dc.identifier.citedreferenceHutzell, W. T., Luecken, D. J., Appel, K. W., & Carter, W. P. L. ( 2012 ). Interpreting predictions from the SAPRC07 mechanism based on regional and continental simulations. Atmospheric Environment, 46, 417 – 429. https://doi.org/10.1016/j.atmosenv.2011.09.030
dc.identifier.citedreferenceJimenez, J. L., Canagaratna, M. R., Drewnick, F., Allan, J. D., Alfarra, M. R., Middlebrook, A. M., et al. ( 2016 ). Comment on “The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer”. Aerosol Science and Technology, 50 ( 9 ), I – XV. https://doi.org/10.1080/02786826.2016.1205728
dc.identifier.citedreferenceKrechmer, J. E., Coggon, M. M., Massoli, P., Nguyen, T. B., Crounse, J. D., Hu, W., et al. ( 2015 ). Formation of low volatility organic compounds and Secondary Organic Aerosol from isoprene hydroxyhydroperoxide low‐NO oxidation. Environmental Science & Technology, 49 ( 17 ), 10,330 – 10,339. https://doi.org/10.1021/acs.est.5b02031
dc.identifier.citedreferenceKroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., & Seinfeld, J. H. ( 2006 ). Secondary organic aerosol formation from isoprene photooxidation. Environmental Science & Technology, 40 ( 6 ), 1869 – 1877. https://doi.org/10.1021/es0524301
dc.identifier.citedreferenceKroll, J. H., & Seinfeld, J. H. ( 2008 ). Chemistry of secondary organic aerosol: Formation and evolution of low‐volatility organics in the atmosphere. Atmospheric Environment, 42 ( 16 ), 3593 – 3624. https://doi.org/10.1016/j.atmosenv.2008.01.003
dc.identifier.citedreferenceLane, T. E., Donahue, N. M., & Pandis, S. N. ( 2008 ). Effect of NO x on secondary organic aerosol concentrations. Environmental Science & Technology, 42 ( 16 ), 6022 – 6027. https://doi.org/10.1021/es703225a
dc.identifier.citedreferenceLanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., & Prevot, A. S. H. ( 2007 ). Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmospheric Chemistry and Physics, 7 ( 6 ), 1503 – 1522.
dc.identifier.citedreferenceLee, B. H., Mohr, C., Lopez‐Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., et al. ( 2016 ). Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 6 ), 1516 – 1521. https://doi.org/10.1073/pnas.1508108113
dc.identifier.citedreferenceLin, Y. H., Zhang, H., Pye, H. O. T., Zhang, Z., Marth, W. J., Park, S., et al. ( 2013 ). Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 17 ), 6718 – 6723. https://doi.org/10.1073/pnas.1221150110
dc.identifier.citedreferenceLin, Y. H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H., Rubitschun, C. L., et al. ( 2012 ). Isoprene epoxydiols as precursors to secondary organic aerosol formation: Acid‐catalyzed reactive uptake studies with authentic compounds. Environmental Science & Technology, 46 ( 1 ), 250 – 258. https://doi.org/10.1021/es202554c
dc.identifier.citedreferenceLiu, J., Russell, L. M., Lee, A. K. Y., McKinney, K. A., Surratt, J. D., & Ziemann, P. J. ( 2017 ). Observational evidence for pollution‐influenced selective uptake contributing to biogenic secondary organic aerosols in the southeastern US. Geophysical Research Letters, 44, 8056 – 8064. https://doi.org/10.1002/2017gl074665
dc.identifier.citedreferenceLiu, J. M., et al. ( 2016 ). Efficient isoprene secondary organic aerosol formation from a non‐IEPDX pathway. Environmental Science & Technology, 50 ( 18 ), 9872 – 9880. https://doi.org/10.1021/acs.est.6b01872
dc.identifier.citedreferenceLiu, S., Ahlm, L., Day, D. A., Russell, L. M., Zhao, Y., Gentner, D. R., et al. ( 2012 ). Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield. Journal of Geophysical Research, 117, D00V26. https://doi.org/10.1029/2012jd018170
dc.identifier.citedreferenceLiu, Y. J., Herdlinger‐Blatt, I., McKinney, K. A., & Martin, S. T. ( 2013 ). Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation. Atmospheric Chemistry and Physics, 13 ( 11 ), 5715 – 5730. https://doi.org/10.5194/acp‐13‐5715‐2013
dc.identifier.citedreferenceLopez‐Hilfiker, F. D., Mohr, C., D’Ambro, E. L., Lutz, A., Riedel, T. P., Gaston, C. J., et al. ( 2016 ). Molecular composition and volatility of organic aerosol in the Southeastern US: implications for IEPDX derived SOA. Environmental Science & Technology, 50 ( 5 ), 2200 – 2209. https://doi.org/10.1021/acs.est.5b04769
dc.identifier.citedreferenceMaria, S. F., Russell, L. M., Turpin, B. J., & Porcja, R. J. ( 2002 ). FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean. Atmospheric Environment, 36 ( 33 ), 5185 – 5196. https://doi.org/10.1016/s1352‐2310(02)00654‐4
dc.identifier.citedreferenceMatsui, H., Koike, M., Kondo, Y., Takami, A., Fast, J. D., Kanaya, Y., & Takigawa, M. ( 2014 ). Volatility basis‐set approach simulation of organic aerosol formation in East Asia: Implications for anthropogenic‐biogenic interaction and controllable amounts. Atmospheric Chemistry and Physics, 14 ( 18 ), 9513 – 9535. https://doi.org/10.5194/acp‐14‐9513‐2014
dc.identifier.citedreferenceMcRoberts, R. E., Bechtold, W. A., Patterson, P. L., Scott, C. T., & Reams, G. A. ( 2005 ). The enhanced forest inventory and analysis program of the USDA Forest Service: Historical perspective and announcement of statistical documentation. Journal of Forestry, 103 ( 6 ), 304 – 308.
dc.identifier.citedreferenceMedeiros, P. M., Conte, M. H., Weber, J. C., & Simoneit, B. R. T. ( 2006 ). Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmospheric Environment, 40 ( 9 ), 1694 – 1705. https://doi.org/10.1016/j.atmosenv.2005.11.001
dc.identifier.citedreferenceMiddlebrook, A. M., Bahreini, R., Jimenez, J. L., & Canagaratna, M. R. ( 2012 ). Evaluation of composition‐dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data. Aerosol Science and Technology, 46 ( 3 ), 258 – 271. https://doi.org/10.1080/02786826.2011.620041
dc.identifier.citedreferenceMilford, J. B., Gao, D. F., Zafirakou, A., & Pierce, T. E. ( 1994 ). Ozone precursor levels and responses to emissions reductions analysis of regional oxidant model results. Atmospheric Environment, 28 ( 12 ), 2093 – 2104. https://doi.org/10.1016/1352‐2310(94)90476‐6
dc.identifier.citedreferenceMoore, R. H., & Nenes, A. ( 2009 ). Scanning flow CCN analysis—A method for fast measurements of CCN Spectra. Aerosol Science and Technology, 43 ( 12 ), 1192 – 1207. https://doi.org/10.1080/02786820903289780
dc.identifier.citedreferenceMurphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S., et al. ( 2017 ). Semivolatile POA and parameterized total combustion SOA in CMAQv5. 2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics, 17 ( 18 ), 11,107 – 11,133.
dc.identifier.citedreferenceNg, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., et al. ( 2017 ). Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 17 ( 3 ), 2103 – 2162. https://doi.org/10.5194/acp‐17‐2103‐2017
dc.identifier.citedreferenceNg, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., et al. ( 2007 ). Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics, 7 ( 19 ), 5159 – 5174. https://doi.org/10.5194/acp‐7‐5159‐2007
dc.identifier.citedreferenceNg, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., et al. ( 2011 ). An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Science and Technology, 45 ( 7 ), 780 – 794. https://doi.org/10.1080/02786826.2011.560211
dc.identifier.citedreferenceNg, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., et al. ( 2008 ). Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmospheric Chemistry and Physics, 8 ( 14 ), 4117 – 4140. https://doi.org/10.5194/acp‐8‐4117‐2008
dc.identifier.citedreferencePalen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., & Flagan, R. C. ( 1992 ). Fourier transform infrared analysis of aerosol formed in the photooxidation of isoprene and beta pinene. Atmospheric Environment Part a‐General Topics, 26 ( 7 ), 1239 – 1251. https://doi.org/10.1016/0960‐1686(92)90385‐x
dc.identifier.citedreferencePresto, A. A., Gordon, T. D., & Robinson, A. L. ( 2014 ). Primary to secondary organic aerosol: Evolution of organic emissions from mobile combustion sources. Atmospheric Chemistry and Physics, 14 ( 10 ), 5015 – 5036. https://doi.org/10.5194/acp‐14‐5015‐2014
dc.identifier.citedreferencePresto, A. A., Hartz, K. E. H., & Donahue, N. M. ( 2005 ). Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NO x concentration. Environmental Science & Technology, 39 ( 18 ), 7046 – 7054. https://doi.org/10.1021/es050400s
dc.identifier.citedreferencePye, H. O. T., Chan, A. W. H., Barkley, M. P., & Seinfeld, J. H. ( 2010 ). Global modeling of organic aerosol: The importance of reactive nitrogen (NO x and NO 3 ). Atmospheric Chemistry and Physics, 10 ( 22 ), 11,261 – 11,276. https://doi.org/10.5194/acp‐10‐11261‐2010
dc.identifier.citedreferencePye, H. O. T., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L., Baker, K. R., et al. ( 2015 ). Modeling the current and future roles of particulate organic nitrates in the southeastern United States. Environmental Science & Technology, 49 ( 24 ), 14,195 – 14,203. https://doi.org/10.1021/acs.est.5b03738
dc.identifier.citedreferencePye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., et al. ( 2017 ). On the implications of aerosol liquid water and phase separation for organic aerosol mass. Atmospheric Chemistry and Physics, 17 ( 1 ), 343 – 369. https://doi.org/10.5194/acp‐17‐343‐2017
dc.identifier.citedreferencePye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin, Y. H., et al. ( 2013 ). Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation. Environmental Science & Technology, 47 ( 19 ), 11,056 – 11,064. https://doi.org/10.1021/es402106h
dc.identifier.citedreferenceRiva, M., Budisulistiorini, S. H., Zhang, Z. F., Gold, A., Thornton, J. A., Turpin, B. J., & Surratt, J. D. ( 2017 ). Multiphase reactivity of gaseous hydroperoxide oligomers produced from isoprene ozonolysis in the presence of acidified aerosols. Atmospheric Environment, 152, 314 – 322. https://doi.org/10.1016/j.atmosenv.2016.12.040
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.