Show simple item record

Integrin alpha V beta 3 targeted dendrimer‐rapamycin conjugate reduces fibroblast‐mediated prostate tumor progression and metastasis

dc.contributor.authorHill, Elliott E.
dc.contributor.authorKim, Jin Koo
dc.contributor.authorJung, Younghun
dc.contributor.authorNeeley, Chris K.
dc.contributor.authorPienta, Kenneth J.
dc.contributor.authorTaichman, Russell S.
dc.contributor.authorNor, Jacques E.
dc.contributor.authorBaker, James R.
dc.contributor.authorKrebsbach, Paul H.
dc.date.accessioned2018-11-20T15:35:34Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationHill, Elliott E.; Kim, Jin Koo; Jung, Younghun; Neeley, Chris K.; Pienta, Kenneth J.; Taichman, Russell S.; Nor, Jacques E.; Baker, James R.; Krebsbach, Paul H. (2018). "Integrin alpha V beta 3 targeted dendrimer‐rapamycin conjugate reduces fibroblast‐mediated prostate tumor progression and metastasis." Journal of Cellular Biochemistry 119(10): 8074-8083.
dc.identifier.issn0730-2312
dc.identifier.issn1097-4644
dc.identifier.urihttps://hdl.handle.net/2027.42/146470
dc.description.abstractTherapeutic strategies targeting both cancer cells and associated cells in the tumor microenvironment offer significant promise in cancer therapy. We previously reported that generation 5 (G5) dendrimers conjugated with cyclic‐RGD peptides target cells expressing integrin alpha V beta 3. In this study, we report a novel dendrimer conjugate modified to deliver the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. In vitro analyses demonstrated that this drug conjugate, G5‐FI‐RGD‐rapamycin, binds to prostate cancer (PCa) cells and fibroblasts to inhibit mTOR signaling and VEGF expression. In addition, G5‐FI‐RGD‐rapamycin inhibits mTOR signaling in cancer cells more efficiently under proinflammatory conditions compared to free rapamycin. In vivo studies established that G5‐FI‐RGD‐rapamycin significantly inhibits fibroblast‐mediated PCa progression and metastasis. Thus, our results suggest the potential of new rapamycin‐conjugated multifunctional nanoparticles for PCa therapy.Here, we synthesized and characterized a novel dendrimer conjugate, G5‐FI‐RGD‐rapamycin. Multifunctional G5‐FI‐RGD‐rapamycin binds to PCa and fibroblasts via alpha V beta 3 integrin and significantly inhibits mTOR signaling and VEGF expression. These in vitro data were confirmed by in vivo data that G5‐FI‐RGD‐rapamycin inhibits fibroblast‐mediated PCa progression and metastasis.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprostate cancer
dc.subject.otherrapamycin
dc.subject.otherVEGF
dc.subject.otherdendrimer
dc.subject.otherintegrin
dc.subject.othermetastasis
dc.subject.othermTOR
dc.subject.otherfibroblast
dc.titleIntegrin alpha V beta 3 targeted dendrimer‐rapamycin conjugate reduces fibroblast‐mediated prostate tumor progression and metastasis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146470/1/jcb26727.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146470/2/jcb26727_am.pdf
dc.identifier.doi10.1002/jcb.26727
dc.identifier.sourceJournal of Cellular Biochemistry
dc.identifier.citedreferenceNor JE, Polverini PJ. Role of endothelial cell survival and death signals in angiogenesis. Angiogenesis. 1999; 3: 101 – 116.
dc.identifier.citedreferenceScaffidi AK, Moodley YP, Weichselbaum M, Thompson PJ, Knight DA. Regulation of human lung fibroblast phenotype and function by vitronectin and vitronectin integrins. J Cell Sci. 2001; 114: 3507 – 3516.
dc.identifier.citedreferenceLaplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell. 2012; 149: 274 – 293.
dc.identifier.citedreferenceVilla‐Diaz LG, Kim JK, Laperle A, Palecek SP, Krebsbach PH. Inhibition of FAK signaling by integrin alpha6beta1 supports human pluripotent stem cell self‐renewal. Stem Cells. 2016; 34: 1753 – 1764.
dc.identifier.citedreferenceKrebsbach PH, Villa‐Diaz LG. The role of integrin alpha6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells Dev. 2017; 26: 1090 – 1099.
dc.identifier.citedreferenceHynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002; 110: 673 – 687.
dc.identifier.citedreferenceKwakwa KA, Sterling JA. Integrin alphavbeta3 signaling in tumor‐Induced bone disease. Cancers (Basel). 2017; 9: 84.
dc.identifier.citedreferenceHill E, Shukla R, Park SS, Baker JR, Jr. Synthetic PAMAM‐RGD conjugates target and bind to odontoblast‐like MDPC 23 cells and the predentin in tooth organ cultures. Bioconjug Chem. 2007; 18: 1756 – 1762.
dc.identifier.citedreferenceRameshwer Shukla EH, Shi X, Kim J, Muniz MC, Sun K, Baker RJ, Jr. Tumor microvasculature targeting with dendrimer‐entrapped gold nanoparticles. Soft Matter. 2008; 4: 2160 – 2163.
dc.identifier.citedreferenceWang J, Ying G, Wang J, et al. Characterization of phosphoglycerate kinase‐1 expression of stromal cells derived from tumor microenvironment in prostate cancer progression. Cancer Res. 2010; 70: 471 – 480.
dc.identifier.citedreferenceJung Y, Kim JK, Shiozawa Y, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013; 4: 1795.
dc.identifier.citedreferenceNor JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)‐mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl‐2 expression. Am J Pathol. 1999; 154: 375 – 384.
dc.identifier.citedreferenceSchmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000; 103: 253 – 262.
dc.identifier.citedreferenceMartin DE, Soulard A, Hall MN. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell. 2004; 119: 969 – 979.
dc.identifier.citedreferenceGuertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007; 12: 9 – 22.
dc.identifier.citedreferenceFerrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005; 438: 967 – 974.
dc.identifier.citedreferenceFukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998; 94: 715 – 725.
dc.identifier.citedreferenceSarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006; 22: 159 – 168.
dc.identifier.citedreferenceLee CC, MacKay JA, Frechet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005; 23: 1517 – 1526.
dc.identifier.citedreferencePaleos CM, Tsiourvas D, Sideratou Z. Molecular engineering of dendritic polymers and their application as drug and gene delivery systems. Mol Pharm. 2007; 4: 169 – 188.
dc.identifier.citedreferenceTomalia DA, Reyna LA, Svenson S. Dendrimers as multi‐purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans. 2007; 35: 61 – 67.
dc.identifier.citedreferencePan D, She W, Guo C, Luo K, Yi Q, Gu Z. PEGylated dendritic diaminocyclohexyl‐platinum (II) conjugates as pH‐responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials. 2014; 35: 10080 – 10092.
dc.identifier.citedreferenceEllerhorst JA, Bedikian A, Ring S, Buzaid AC, Eton O, Legha SS. Phase II trial of doxil for patients with metastatic melanoma refractory to frontline therapy. Oncol Rep. 1999; 6: 1097 – 1099.
dc.identifier.citedreferenceFassas A, Anagnostopoulos A. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma. 2005; 46: 795 – 802.
dc.identifier.citedreferenceGreen MR, Manikhas GM, Orlov S, et al. Abraxane, a novel Cremophor‐free, albumin‐bound particle form of paclitaxel for the treatment of advanced non‐small‐cell lung cancer. Ann Oncol. 2006; 17: 1263 – 1268.
dc.identifier.citedreferenceRasanen K, Virtanen I, Salmenpera P, Grenman R, Vaheri A. Differences in the nemosis response of normal and cancer‐associated fibroblasts from patients with oral squamous cell carcinoma. PLoS ONE. 2009; 4: e6879.
dc.identifier.citedreferenceOlumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma‐associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999; 59: 5002 – 5011.
dc.identifier.citedreferenceXu WW, Li B, Guan XY, et al. Cancer cell‐secreted IGF2 instigates fibroblasts and bone marrow‐derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017; 8: 14399.
dc.identifier.citedreferenceDai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J. MTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 2011; 25: 1159 – 1172.
dc.identifier.citedreferenceDai N, Christiansen J, Nielsen FC, Avruch J. MTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev. 2013; 27: 301 – 312.
dc.identifier.citedreferenceLee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007; 130: 440 – 455.
dc.identifier.citedreferenceHou CH, Yang RS, Hou SM, Tang CH. TNF‐alpha increases alphavbeta3 integrin expression and migration in human chondrosarcoma cells. J Cell Physiol. 2011; 226: 792 – 799.
dc.identifier.citedreferenceLee DY, Li YS, Chang SF, et al. Oscillatory flow‐induced proliferation of osteoblast‐like cells is mediated by alphavbeta3 and beta1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3‐kinase and the Akt/mTOR/p70S6K pathway. J Biol Chem. 2010; 285: 30 – 42.
dc.identifier.citedreferenceSporn MB. The war on cancer. Lancet. 1996; 347: 1377 – 1381.
dc.identifier.citedreferenceTse JC, Kalluri R. Mechanisms of metastasis: epithelial‐to‐mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007; 101: 816 – 829.
dc.identifier.citedreferenceBhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004; 432: 332 – 337.
dc.identifier.citedreferenceCanon JR, Roudier M, Bryant R, et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis. 2008; 25: 119 – 129.
dc.identifier.citedreferenceBussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone ? Cancer Metastasis Rev. 2008; 27: 41 – 55.
dc.identifier.citedreferenceDoehn U, Hauge C, Frank SR, et al. RSK is a principal effector of the RAS‐ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009; 35: 511 – 522.
dc.identifier.citedreferenceDai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017; 46: 3830 – 3852.
dc.identifier.citedreferenceFolkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992; 3: 65 – 71.
dc.identifier.citedreferenceWeidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early‐stage breast carcinoma. J Natl Cancer Inst. 1992; 84: 1875 – 1887.
dc.identifier.citedreferenceDai J, Kitagawa Y, Zhang J, et al. Vascular endothelial growth factor contributes to the prostate cancer‐induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res. 2004; 64: 994 – 999.
dc.identifier.citedreferenceKaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1‐positive haematopoietic bone marrow progenitors initiate the pre‐metastatic niche. Nature. 2005; 438: 820 – 827.
dc.identifier.citedreferenceLiotta LA, Kohn EC. The microenvironment of the tumour‐host interface. Nature. 2001; 411: 375 – 379.
dc.identifier.citedreferenceHattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone‐marrow microenvironment. Nat Med. 2002; 8: 841 – 849.
dc.identifier.citedreferenceDecaussin M, Sartelet H, Robert C, et al. Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF‐R1‐Flt1 and VEGF‐R2‐Flk1/KDR) in non‐small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival. J Pathol. 1999; 188: 369 – 377.
dc.identifier.citedreferenceKuhn H, Hammerschmidt S, Wirtz H. Targeting tumorangiogenesis in lung cancer by suppression of VEGF and its receptor—results from clinical trials and novel experimental approaches. Curr Med Chem. 2007; 14: 3157 – 3165.
dc.identifier.citedreferenceIto TK, Ishii G, Chiba H, Ochiai A. The VEGF angiogenic switch of fibroblasts is regulated by MMP‐7 from cancer cells. Oncogene. 2007; 26: 7194 – 7203.
dc.identifier.citedreferenceYang F, Strand DW, Rowley DR. Fibroblast growth factor‐2 mediates transforming growth factor‐beta action in prostate cancer reactive stroma. Oncogene. 2008; 27: 450 – 459.
dc.identifier.citedreferenceGleave M, Hsieh JT, Gao CA, von Eschenbach AC, Chung LW. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 1991; 51: 3753 – 3761.
dc.identifier.citedreferenceHwang RF, Moore T, Arumugam T, et al. Cancer‐associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 2008; 68: 918 – 926.
dc.identifier.citedreferencePollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 2008; 84: 623 – 630.
dc.identifier.citedreferenceTuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res. 2002; 62: 3298 – 3307.
dc.identifier.citedreferenceOrimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF‐1/CXCL12 secretion. Cell. 2005; 121: 335 – 348.
dc.identifier.citedreferenceKalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6: 392 – 401.
dc.identifier.citedreferenceZeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma‐associated fibroblasts. Cancer Res. 2007; 67: 10123 – 10128.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.