Show simple item record

Interstitial assessment of aggressive prostate cancer by physioâ chemical photoacoustics: An ex vivo study with intact human prostates

dc.contributor.authorHuang, Shengsong
dc.contributor.authorQin, Yu
dc.contributor.authorChen, Yingna
dc.contributor.authorPan, Jing
dc.contributor.authorXu, Chengdang
dc.contributor.authorWu, Denglong
dc.contributor.authorChao, Wan‐yu
dc.contributor.authorWei, John T.
dc.contributor.authorTomlins, Scott A.
dc.contributor.authorWang, Xueding
dc.contributor.authorFowlkes, J. Brian
dc.contributor.authorCarson, Paul L.
dc.contributor.authorCheng, Qian
dc.contributor.authorXu, Guan
dc.date.accessioned2018-11-20T15:35:37Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationHuang, Shengsong; Qin, Yu; Chen, Yingna; Pan, Jing; Xu, Chengdang; Wu, Denglong; Chao, Wan‐yu ; Wei, John T.; Tomlins, Scott A.; Wang, Xueding; Fowlkes, J. Brian; Carson, Paul L.; Cheng, Qian; Xu, Guan (2018). "Interstitial assessment of aggressive prostate cancer by physioâ chemical photoacoustics: An ex vivo study with intact human prostates." Medical Physics 45(9): 4125-4132.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/146471
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotoacoustic physioâ chemical analysis
dc.subject.otherphotoacoustic spectral analysis
dc.subject.otherprostate cancer
dc.subject.otheroptoacoustics
dc.subject.othermedical imaging
dc.titleInterstitial assessment of aggressive prostate cancer by physioâ chemical photoacoustics: An ex vivo study with intact human prostates
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146471/1/mp13061.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146471/2/mp13061_am.pdf
dc.identifier.doi10.1002/mp.13061
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceSinha S, Rao NA, Chinni BK, Dogra VS. Evaluation of frequency domain analysis of a multiwavelength photoacoustic signal for differentiating malignant from benign and normal prostates. J Ultrasound Med. 2016; 35: 2165 â 2177.
dc.identifier.citedreferenceGleason DF. Histologic grading of prostate cancer: a perspective. Hum Pathol. 1992; 23: 273 â 279.
dc.identifier.citedreferenceRabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR. Incidence and clinical significance of falseâ negative sextant prostate biopsies. J Urol. 1998; 159: 1247 â 1250.
dc.identifier.citedreferenceTaira AV, Merrick GS, Galbreath RW, et al. Performance of transperineal templateâ guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostata Cancer Prostatic Dis. 2010; 13: 71 â 77.
dc.identifier.citedreferenceMerrick GS, Gutman S, Andreini H, et al. Prostate cancer distribution in patients diagnosed by transperineal templateâ guided saturation biopsy. Eur Urol. 2007; 52: 715 â 724.
dc.identifier.citedreferenceEhdaie B, Shariat SF. Magnetic resonance imagingâ targeted prostate biopsy: back to the future. Eur Urol. 2013; 63: 141 â 142.
dc.identifier.citedreferenceFiard G, Hohn N, Descotes Jâ L, Rambeaud Jâ J, Troccaz J, Long Jâ A. Targeted MRIâ guided prostate biopsies for the detection of prostate cancer: initial clinical experience with realâ time 3â dimensional transrectal ultrasound guidance and magnetic resonance/transrectal ultrasound image fusion. Urology. 2013; 81: 1372 â 1378.
dc.identifier.citedreferenceMoore CM, Robertson NL, Arsanious N, et al. Imageâ guided prostate biopsy using magnetic resonance imagingâ derived targets: a systematic review. Eur Urol. 2013; 63: 125 â 140.
dc.identifier.citedreferenceRosenkrantz AB, Ginocchio LA, Cornfeld D, et al. Interobserver reproducibility of the PIâ RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology. 2016; 280: 793 â 804.
dc.identifier.citedreferenceSiddiqui MM, Raisâ Bahrami S, Truong H, et al. Magnetic resonance imaging/ultrasoundâ fusion biopsy significantly upgrades prostate cancer versus systematic 12â core transrectal ultrasound biopsy. Eur Urol. 2013; 64: 713 â 719.
dc.identifier.citedreferenceZisman A, Leibovici DAN, Kleinmann J, Siegel YI, Lindner A. The impact of prostate biopsy on patient wellâ being: a prospective study of pain, anxiety and erectile dysfunction. J Urol. 2001; 165: 445 â 454.
dc.identifier.citedreferenceXu G, Meng Zâ X, Lin JD, et al. The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis. Radiology. 2014; 271: 130777.
dc.identifier.citedreferenceXu G, Meng Zâ X, Lin Jâ D, et al. High resolution physioâ chemical tissue analysis: towards nonâ invasive in vivo biopsy. Sci Rep. 2016; 6: 16937.
dc.identifier.citedreferenceXu G, Dar IA, Tao C, Liu X, Deng CX, Wang X. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: a feasibility study. Appl Phys Lett. 2012; 101: 221102 â 221105.
dc.identifier.citedreferenceXu G, Fowlkes JB, Tao C, Liu X, Wang X. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: analytical model. Ultrasound Med Biol. 2015; 41: 1473 â 1480.
dc.identifier.citedreferenceXu G, Xue Y, Ã zkurt ZG, et al. Photoacoustic imaging features of intraocular tumors: Retinoblastoma and uveal melanoma. PLoS ONE. 2017; 12: e0170752.
dc.identifier.citedreferenceXu G, Davis MC, Siddiqui J, et al. Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues. Biomed Opt Expr. 2015; 6: 4781 â 4789.
dc.identifier.citedreferenceKumon RE, Deng CX, Wang X. Frequencyâ domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model. Ultrasound Med Biol. 2011; 37: 834 â 839.
dc.identifier.citedreferenceDogra VS, Chinni BK, Valluru KS, et al. Multispectral photoacoustic imaging of prostate cancer: preliminary exâ vivo results. J Clin Imaging Sci. 2013; 3: 41.
dc.identifier.citedreferenceGleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 2002; 167: 953 â 958.
dc.identifier.citedreferenceMorrison C, Thornhill J, Gaffney E. The connective tissue framework in the normal prostate, B.P.H and prostate cancer: analysis by scanning electron microscopy after cellular digestion. Urol Res. 2000; 28: 304 â 307.
dc.identifier.citedreferencePu Y, Wang W, Tang G, Alfano RR. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength. J Biomed Opt. 2010; 15: 047008.
dc.identifier.citedreferenceKim SB, Temiyasathit C, Bensalah K, et al. An effective classification procedure for diagnosis of prostate cancer in near infrared spectra. Exp Syst Appl. 2010; 37: 3863 â 3869.
dc.identifier.citedreferenceZhang H, Chao Wâ Y, Cheng Q, et al. Interstitial photoacoustic spectral analysis: instrumentation and validation. Biomed Opt Expr. 2017; 8: 1689 â 1697.
dc.identifier.citedreferenceWeinreb JC, Barentsz JO, Choyke PL, et al. PIâ RADS prostate imaging reporting and data system: 2015, version 2. Eur Urol. 2016; 69: 16 â 40.
dc.identifier.citedreferenceWelch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. 1967; 15: 70 â 73.
dc.identifier.citedreferenceWang Hâ W, Chai N, Wang P, et al. Labelâ free bondâ selective imaging by listening to vibrationally excited molecules. Phys Rev Lett. 2011; 106: 238106.
dc.identifier.citedreferenceCortes C, Vapnik V. Support vector machine. Mach Learn. 1995; 20: 273 â 297.
dc.identifier.citedreferenceChang Câ C, Lin Câ J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011; 2: 27.
dc.identifier.citedreferenceXu G, Tomlins SA, Siddiqui J, et al. Evaluation of Gleason scores by photoacoustic spectral analysis, 9323: 93231S; 2015.
dc.identifier.citedreferenceYao Dâ K, Maslov K, Shung KK, Zhou Q, Wang LV. In vivo labelâ free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt Lett. 2010; 35: 4139 â 4141.
dc.identifier.citedreferenceSiegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA. 2016; 66: 7 â 30.
dc.identifier.citedreferenceCooperberg MR, Broering JM, Litwin MS, et al. The contemporary management of prostate cancer in the united states: lessons from the cancer of the prostate strategic urologic research endeavor (capsure), a national disease registry. J Urol. 2004; 171: 1393 â 1401.
dc.identifier.citedreferenceFleshner NE, O’Sullivan M, Fair WR. Prevalence and predictors of a positive repeat transrectal ultrasound guided needle biopsy of the prostate. J Urol. 1997; 158: 505 â 509.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.