Show simple item record

Biosynthesis, structure, and folding of the insulin precursor protein

dc.contributor.authorLiu, Ming
dc.contributor.authorWeiss, Michael A.
dc.contributor.authorArunagiri, Anoop
dc.contributor.authorYong, Jing
dc.contributor.authorRege, Nischay
dc.contributor.authorSun, Jinhong
dc.contributor.authorHaataja, Leena
dc.contributor.authorKaufman, Randal J.
dc.contributor.authorArvan, Peter
dc.date.accessioned2018-11-20T15:35:41Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationLiu, Ming; Weiss, Michael A.; Arunagiri, Anoop; Yong, Jing; Rege, Nischay; Sun, Jinhong; Haataja, Leena; Kaufman, Randal J.; Arvan, Peter (2018). "Biosynthesis, structure, and folding of the insulin precursor protein." Diabetes, Obesity and Metabolism 20: 28-50.
dc.identifier.issn1462-8902
dc.identifier.issn1463-1326
dc.identifier.urihttps://hdl.handle.net/2027.42/146475
dc.publisherBlackwell Publishing Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdisulphide‐linked protein complexes
dc.subject.otherpolypeptide chain initiation
dc.subject.otherSec61 translocon
dc.subject.othersecretory protein biosynthetic pathway
dc.subject.otherunfolded protein response
dc.titleBiosynthesis, structure, and folding of the insulin precursor protein
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146475/1/dom13378_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146475/2/dom13378.pdf
dc.identifier.doi10.1111/dom.13378
dc.identifier.sourceDiabetes, Obesity and Metabolism
dc.identifier.citedreferenceParys JB, Decuypere JP, Bultynck G. Role of the inositol 1,4,5‐trisphosphate receptor/Ca 2+ −release channel in autophagy. Cell Commun Signal. 2012; 10: 17.
dc.identifier.citedreferenceAvrahami D, Li C, Zhang J, et al. Aging‐dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell function. Cell Metab. 2015; 22: 619 ‐ 632.
dc.identifier.citedreferenceTersey SA, Nishiki Y, Templin AT, et al. Islet beta‐cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes. 2012; 61: 818 ‐ 827.
dc.identifier.citedreferenceWatkins RA, Evans‐Molina C, Terrell JK, et al. Proinsulin and heat shock protein 90 as biomarkers of beta‐cell stress in the early period after onset of type 1 diabetes. Transl Res. 2016; 168: 96 ‐ 106.e1.
dc.identifier.citedreferenceCechin SR, Lopez‐Ocejo O, Karpinsky‐Semper D, Buchwald P. Biphasic decline of beta‐cell function with age in euglycemic nonobese diabetic mice parallels diabetes onset. IUBMB Life. 2015; 67: 634 ‐ 644.
dc.identifier.citedreferenceWang S, Li J, Li XJ. Morphological and functional characteristics of pancreatic islet beta cells in natural aging SD rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 2008; 39: 197 ‐ 201.
dc.identifier.citedreferenceGoodge KA, Hutton JC. Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta‐cell. Semin Cell Dev Biol. 2000; 11: 235 ‐ 242.
dc.identifier.citedreferenceSkelly RH, Schuppin GT, Ishihara H, Oka Y, Rhodes CJ. Glucose‐regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin‐producing MIN6 cell line. Diabetes. 1996; 45: 37 ‐ 43.
dc.identifier.citedreferenceWasserfall C, Nick HS, Campbell‐Thompson M, et al. Persistence of pancreatic insulin mRNA expression and proinsulin protein in type 1 diabetes Pancreata. Cell Metab. 2017; 26: 568 ‐ 575.e3.
dc.identifier.citedreferenceUchizono Y, Alarcon C, Wicksteed BL, Marsh BJ, Rhodes CJ. The balance between proinsulin biosynthesis and insulin secretion: where can imbalance lead? Diabetes Obes Metab. 2007; 9 ( Suppl. 2 ): 56 ‐ 66.
dc.identifier.citedreferenceAlarcon C, Boland BB, Uchizono Y, et al. Pancreatic ss‐cell adaptive plasticity in obesity increases insulin production but adversely affects secretory function. Diabetes. 2016; 65: 438 ‐ 450.
dc.identifier.citedreferenceKjorholt C, Akerfeldt MC, Biden TJ, Laybutt DR. Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta‐cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes. 2005; 54: 2755 ‐ 2763.
dc.identifier.citedreferenceNolan CJ, Delghingaro‐Augusto V. Reversibility of defects in proinsulin processing and islet beta‐cell failure in obesity‐related type 2 diabetes. Diabetes. 2016; 65: 352 ‐ 354.
dc.identifier.citedreferenceAlonso LC, Yokoe T, Zhang P, et al. Glucose infusion in mice: a new model to induce beta‐cell replication. Diabetes. 2007; 56: 1792 ‐ 1801.
dc.identifier.citedreferenceNagamatsu S, Bolaffi JL, Grodsky GM. Direct effects of glucose on proinsulin synthesis and processing during desensitization. Endocrinology. 1987; 120: 1225 ‐ 1231.
dc.identifier.citedreferenceZhang L, Lai E, Teodoro T, Volchuk A. GRP78, but not protein‐disulfide isomerase, partially reverses hyperglycemia‐induced inhibition of insulin synthesis and secretion in pancreatic {beta}‐cells. J Biol Chem. 2009; 284: 5289 ‐ 5298.
dc.identifier.citedreferenceKaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH. Ubiquitinated‐protein aggregates form in pancreatic beta‐cells during diabetes‐induced oxidative stress and are regulated by autophagy. Diabetes. 2007; 56: 930 ‐ 939.
dc.identifier.citedreferenceRane NS, Kang SW, Chakrabarti O, Feigenbaum L, Hegde RS. Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev Cell. 2008; 15: 359 ‐ 370.
dc.identifier.citedreferenceHegde RS, Kang SW. The concept of translocational regulation. J Cell Biol. 2008; 182: 225 ‐ 232.
dc.identifier.citedreferenceKang SW, Rane NS, Kim SJ, Garrison JL, Taunton J, Hegde RS. Substrate‐specific translocational attenuation during ER stress defines a pre‐emptive quality control pathway. Cell. 2006; 127: 999 ‐ 1013.
dc.identifier.citedreferenceArunagiri A, Haataja L, Cunningham CN, et al. Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann N Y Acad Sci. 2018; 1418: 5 ‐ 19.
dc.identifier.citedreferenceEngin F. ER stress and development of type 1 diabetes. J Invest Med. 2016; 64: 2 ‐ 6.
dc.identifier.citedreferenceMarkussen J. Comparative reduction/oxidation studies with single chain des‐(B30) insulin and porcine proinsulin. Int J Pept Protein Res. 1985; 25: 431 ‐ 434.
dc.identifier.citedreferenceVander Mierde D, Scheuner D, Quintens R, et al. Glucose activates a protein phosphatase‐1‐mediated signaling pathway to enhance overall translation in pancreatic beta‐cells. Endocrinology. 2007; 148: 609 ‐ 617.
dc.identifier.citedreferenceKaufman RJ, Back SH, Song B, Han J, Hassler J. The unfolded protein response is required to maintain the integrity of the endoplasmic reticulum, prevent oxidative stress and preserve differentiation in beta‐cells. Diabetes Obes Metab. 2010; 12 (Suppl. 2): 99 ‐ 107.
dc.identifier.citedreferenceGrankvist K, Marklund SL, Taljedal IB. CuZn‐superoxide dismutase, Mn‐superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J. 1981; 199: 393 ‐ 398.
dc.identifier.citedreferenceHoglinger GU, Melhem NM, Dickson DW, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011; 43: 699 ‐ 705.
dc.identifier.citedreferenceTsuchiya Y, Saito M, Kadokura H, et al. IRE1‐XBP1 pathway regulates oxidative proinsulin folding in pancreatic beta cells. J Cell Biol. 2018; 217: 1287 ‐ 1301.
dc.identifier.citedreferenceJainandunsing S, van Miert JNI, Rietveld T, Darcos Wattimena JL, Sijbrands EJG, de Rooij FWM. A stable isotope method for in vivo assessment of human insulin synthesis and secretion. Acta Diabetol. 2016; 53: 935 ‐ 944.
dc.identifier.citedreferenceGold G, Gishizky ML, Grodsky GM. Evidence that glucose "marks" beta cells resulting in preferential release of newly synthesize insulin. Science. 1982; 218: 56 ‐ 58.
dc.identifier.citedreferencePapa FR. Endoplasmic reticulum stress, pancreatic beta‐cell degeneration, and diabetes. Cold Spring Harb Perspect Med. 2012; 2: a007666.
dc.identifier.citedreferenceHou JC, Min L, Pessin JE. Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm. 2009; 80: 473 ‐ 506.
dc.identifier.citedreferenceArvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J. 1998; 332: 593 ‐ 610.
dc.identifier.citedreferenceSugawara T, Kano F, Murata M. Rab2A is a pivotal switch protein that promotes either secretion or ER‐associated degradation of (pro)insulin in insulin‐secreting cells. Sci Rep. 2014; 4: 6952.
dc.identifier.citedreferenceGoginashvili A, Zhang Z, Erbs E, et al. Insulin granules. Insulin secretory granules control autophagy in pancreatic beta cells. Science. 2015; 347: 878 ‐ 882.
dc.identifier.citedreferenceSchuit FC, Kiekens R, Pipeleers DG. Measuring the balance between insulin synthesis and insulin release. Biochem Biophys Res Commun. 1991; 178: 1182 ‐ 1187.
dc.identifier.citedreferenceWeiss MA. Proinsulin and the genetics of diabetes mellitus. J Biol Chem. 2009; 284: 19159 ‐ 19163.
dc.identifier.citedreferenceLiu M, Wan ZL, Chu YC, et al. Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity. J Biol Chem. 2009; 284: 35259 ‐ 35272.
dc.identifier.citedreferenceLee AH, Heidtman K, Hotamisligil GS, Glimcher LH. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci U S A. 2011; 108: 8885 ‐ 8890.
dc.identifier.citedreferenceWortham M, Sander M. Mechanisms of beta‐cell functional adaptation to changes in workload. Diabetes Obes Metab. 2016; 18 (Suppl. 1): 78 ‐ 86.
dc.identifier.citedreferenceTanabe K, Amo‐Shiinoki K, Hatanaka M, Tanizawa Y. Interorgan crosstalk contributing to beta‐cell dysfunction. J Diabetes Res. 2017; 2017: 3605178.
dc.identifier.citedreferenceWang J, Takeuchi T, Tanaka S, et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta‐cell dysfunction in the Mody mouse. J Clin Invest. 1999; 103: 27 ‐ 37.
dc.identifier.citedreferenceHerbach N, Rathkolb B, Kemter E, et al. Dominant‐negative effects of a novel mutated Ins2 allele causes early‐onset diabetes and severe beta‐cell loss in Munich Ins2C95S mutant mice. Diabetes. 2007; 56: 1268 ‐ 1276.
dc.identifier.citedreferenceKanekura K, Ishigaki S, Merksamer PI, Papa FR, Urano F. Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells. Lab Invest. 2013; 93: 1254 ‐ 1258.
dc.identifier.citedreferenceMerksamer PI, Trusina A, Papa FR. Real‐time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell. 2008; 135: 933 ‐ 947.
dc.identifier.citedreferenceTsunoda S, Avezov E, Zyryanova A, et al. Intact protein folding in the glutathione‐depleted endoplasmic reticulum implicates alternative protein thiol reductants. Elife. 2014; 3: e03421.
dc.identifier.citedreferenceLiu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. Vitam Horm. 2014; 95: 35 ‐ 62.
dc.identifier.citedreferenceDodson G, Steiner D. The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol. 1998; 8: 189 ‐ 194.
dc.identifier.citedreferenceAkopian D, Shen K, Zhang X, Shan SO. Signal recognition particle: an essential protein‐targeting machine. Annu Rev Biochem. 2013; 82: 693 ‐ 721.
dc.identifier.citedreferenceOkun MM, Shields D. Translocation of preproinsulin across the endoplasmic reticulum membrane. The relationship between nascent polypeptide size and extent of signal recognition particle‐mediated inhibition of protein synthesis. J Biol Chem. 1992; 267: 11476 ‐ 11482.
dc.identifier.citedreferenceEskridge EM, Shields D. Cell‐free processing and segregation of insulin precursors. J Biol Chem. 1983; 258: 11487 ‐ 11491.
dc.identifier.citedreferencePatzelt C, Labrecque AD, Duguid JR, et al. Detection and kinetic behavior of preproinsulin in pancreatic islets. Proc Natl Acad Sci U S A. 1978; 75: 1260 ‐ 1264.
dc.identifier.citedreferenceLiu M, Sun J, Cui J, et al. INS‐gene mutations: from genetics and beta cell biology to clinical disease. Mol Aspects Med. 2015; 42: 3 ‐ 18.
dc.identifier.citedreferenceGuo H, Sun J, Li X, et al. Positive charge in the n‐region of the signal peptide contributes to efficient post‐translational translocation of small secretory preproteins. J Biol Chem. 2018; 293: 1899 ‐ 1907.
dc.identifier.citedreferenceYan J, Jiang F, Zhang R, et al. Whole‐exome sequencing identifies a novel INS mutation causative of maturity‐onset diabetes of the young 10. J Mol Cell Biol. 2017; 9: 376 ‐ 383.
dc.identifier.citedreferenceIngolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 2011; 147: 789 ‐ 802.
dc.identifier.citedreferenceGuo H, Xiong Y, Witkowski P, et al. Inefficient translocation of preproinsulin contributes to pancreatic beta cell failure and late‐onset diabetes. J Biol Chem. 2014; 289: 16290 ‐ 16302.
dc.identifier.citedreferenceLakkaraju AK, Thankappan R, Mary C, Garrison JL, Taunton J, Strub K. Efficient secretion of small proteins in mammalian cells relies on Sec62‐dependent posttranslational translocation. Mol Biol Cell. 2012; 23: 2712 ‐ 2722.
dc.identifier.citedreferenceLiu M, Lara‐Lemus R, Shan SO, et al. Impaired cleavage of preproinsulin signal peptide linked to autosomal‐dominant diabetes. Diabetes. 2012; 61: 828 ‐ 837.
dc.identifier.citedreferenceLiu M, Hodish I, Haataja L, et al. Proinsulin misfolding and diabetes: mutant INS gene‐induced diabetes of youth. Trends Endocrinol Metab. 2010; 21: 652 ‐ 659.
dc.identifier.citedreferenceJohnson N, Powis K, High S. Post‐translational translocation into the endoplasmic reticulum. Biochim Biophys Acta. 2013; 1833: 2403 ‐ 2409.
dc.identifier.citedreferenceNgosuwan J, Wang NM, Fung KL, Chirico WJ. Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post‐translational translocation of presecretory proteins into the endoplasmic reticulum. J Biol Chem. 2003; 278: 7034 ‐ 7042.
dc.identifier.citedreferenceGarcia PD, Walter P. Full‐length prepro‐alpha‐factor can be translocated across the mammalian microsomal membrane only if translation has not terminated. J Cell Biol. 1988; 106: 1043 ‐ 1048.
dc.identifier.citedreferenceShao S, Hegde RS. A calmodulin‐dependent translocation pathway for small secretory proteins. Cell. 2011; 147: 1576 ‐ 1588.
dc.identifier.citedreferenceJohnson N, Vilardi F, Lang S, Leznicki P, Zimmermann R, High S. TRC40 can deliver short secretory proteins to the Sec61 translocon. J Cell Sci. 2012; 125: 3612 ‐ 3620.
dc.identifier.citedreferencePlath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell. 1998; 94: 795 ‐ 807.
dc.identifier.citedreferenceMeyer HA, Grau H, Kraft R, et al. Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem. 2000; 275: 14550 ‐ 14557.
dc.identifier.citedreferenceHartmann E, Gorlich D, Kostka S, et al. A tetrameric complex of membrane proteins in the endoplasmic reticulum. Eur J Biochem. 1993; 214: 375 ‐ 381.
dc.identifier.citedreferenceHartmann E, Prehn S. The N‐terminal region of the alpha‐subunit of the TRAP complex has a conserved cluster of negative charges. FEBS Lett. 1994; 349: 324 ‐ 326.
dc.identifier.citedreferenceFons RD, Bogert BA, Hegde RS. Substrate‐specific function of the translocon‐associated protein complex during translocation across the ER membrane. J Cell Biol. 2003; 160: 529 ‐ 539.
dc.identifier.citedreferenceWebb GC, Akbar MS, Zhao C, Steiner DF. Expression profiling of pancreatic beta cells: glucose regulation of secretory and metabolic pathway genes. Proc Natl Acad Sci U S A. 2000; 97: 5773 ‐ 5778.
dc.identifier.citedreferenceDIAbetes Genetics Replication And Meta‐analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN‐T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, et al. Genome‐wide trans‐ancestry meta‐analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014; 46: 234 ‐ 244.
dc.identifier.citedreferenceKasuga Y, Hata K, Tajima A, et al. Association of common polymorphisms with gestational diabetes mellitus in Japanese women: a case‐control study. Endocr J. 2017; 64: 463 ‐ 475.
dc.identifier.citedreferenceLevine CG, Mitra D, Sharma A, Smith CL, Hegde RS. The efficiency of protein compartmentalization into the secretory pathway. Mol Biol Cell. 2005; 16: 279 ‐ 291.
dc.identifier.citedreferenceHegde RS, Bernstein HD. The surprising complexity of signal sequences. Trends Biochem Sci. 2006; 31: 563 ‐ 571.
dc.identifier.citedreferenceFrith MC, Forrest AR, Nourbakhsh E, et al. The abundance of short proteins in the mammalian proteome. PLoS Genet. 2006; 2: e52.
dc.identifier.citedreferenceShaffer KL, Sharma A, Snapp EL, Hegde RS. Regulation of protein compartmentalization expands the diversity of protein function. Dev Cell. 2005; 9: 545 ‐ 554.
dc.identifier.citedreferenceRane NS, Chakrabarti O, Feigenbaum L, Hegde RS. Signal sequence insufficiency contributes to neurodegeneration caused by transmembrane prion protein. J Cell Biol. 2010; 188: 515 ‐ 526.
dc.identifier.citedreferenceGoder V, Junne T, Spiess M. Sec61p contributes to signal sequence orientation according to the positive‐inside rule. Mol Biol Cell. 2004; 15: 1470 ‐ 1478.
dc.identifier.citedreferenceChoo KH, Ranganathan S. Flanking signal and mature peptide residues influence signal peptide cleavage. BMC Bioinformatics. 2008; 9 (Suppl. 12): S15.
dc.identifier.citedreferencePierce SB, Costa M, Wisotzkey R, et al. Regulation of DAF‐2 receptor signaling by human insulin and ins‐1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 2001; 15: 672 ‐ 686.
dc.identifier.citedreferenceHua QX, Nakagawa SH, Wilken J, et al. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Genes Dev. 2003; 17: 826 ‐ 831.
dc.identifier.citedreferenceSajid W, Kulahin N, Schluckebier G, et al. Structural and biological properties of the Drosophila insulin‐like peptide 5 show evolutionary conservation. J Biol Chem. 2011; 286: 661 ‐ 673.
dc.identifier.citedreferenceBaldwin TO, Ziegler MM, Chaffotte AF, Goldberg ME. Contribution of folding steps involving the individual subunits of bacterial luciferase to the assembly of the active heterodimeric enzyme. J Biol Chem. 1993; 268: 10766 ‐ 10772.
dc.identifier.citedreferenceHuang Y, Liang Z, Feng Y. The relationship between the connecting peptide of recombined single chain insulin and its biological function. Sci China C Life Sci. 2001; 44: 593 ‐ 600.
dc.identifier.citedreferenceHua QX, Narhi L, Jia W, et al. Native and non‐native structure in a protein‐folding intermediate: spectroscopic studies of partially reduced IGF‐I and an engineered alanine model. J Mol Biol. 1996; 259: 297 ‐ 313.
dc.identifier.citedreferenceHober S, Forsberg G, Palm G, Hartmanis M, Nilsson B. Disulfide exchange folding of insulin‐like growth factor I. Biochemistry. 1992; 31: 1749 ‐ 1756.
dc.identifier.citedreferenceMiller JA, Narhi LO, Hua QX, et al. Oxidative refolding of insulin‐like growth factor 1 yields two products of similar thermodynamic stability: a bifurcating protein‐folding pathway. Biochemistry. 1993; 32: 5203 ‐ 5213.
dc.identifier.citedreferenceQiao ZS, Guo ZY, Feng YM. Putative disulfide‐forming pathway of porcine insulin precursor during its refolding in vitro. Biochemistry. 2001; 40: 2662 ‐ 2668.
dc.identifier.citedreferenceYang Y, Hua QX, Liu J, et al. Solution structure of proinsulin: connecting domain flexibility and prohormone processing. J Biol Chem. 2010; 285: 7847 ‐ 7851.
dc.identifier.citedreferenceCreighton TE. Protein folding coupled to disulphide bond formation. Biol Chem. 1997; 378: 731 ‐ 744.
dc.identifier.citedreferenceDill KA, Chan HS. From Levinthal to pathways to funnels. Nat Struct Biol. 1997; 4: 10 ‐ 19.
dc.identifier.citedreferenceOnuchic JN, Luthey‐Schulten Z, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997; 48: 545 ‐ 600.
dc.identifier.citedreferenceOliveberg M, Wolynes PG. The experimental survey of protein‐folding energy landscapes. Q Rev Biophys. 2005; 38: 245 ‐ 288.
dc.identifier.citedreferenceQiao ZS, Min CY, Hua QX, Weiss MA, Feng YM. In vitro refolding of human proinsulin. Kinetic intermediates, putative disulfide‐forming pathway, folding initiation site, and protential role of C‐peptide in folding process. J Biol Chem. 2003; 278: 17800 ‐ 17809.
dc.identifier.citedreferenceNarhi LO, Hua QX, Arakawa T, et al. Role of native disulfide bonds in the structure and activity of insulin‐like growth factor 1: genetic models of protein‐folding intermediates. Biochemistry. 1993; 32: 5214 ‐ 5221.
dc.identifier.citedreferenceHober S, Hansson A, Uhlen M, Nilsson B. Folding of insulin‐like growth factor I is thermodynamically controlled by insulin‐like growth factor binding protein. Biochemistry. 1994; 33: 6758 ‐ 6761.
dc.identifier.citedreferenceHober S, Uhlen M, Nilsson B. Disulfide exchange folding of disulfide mutants of insulin‐like growth factor I in vitro. Biochemistry. 1997; 36: 4616 ‐ 4622.
dc.identifier.citedreferenceMilner SJ, Carver JA, Ballard FJ, Francis GL. Probing the disulfide folding pathway of insulin‐like growth factor‐I. Biotechnol Bioeng. 1999; 62: 693 ‐ 703.
dc.identifier.citedreferenceHua QX, Hu SQ, Frank BH, et al. Mapping the functional surface of insulin by design: structure and function of a novel A‐chain analogue. J Mol Biol. 1996; 264: 390 ‐ 403.
dc.identifier.citedreferenceDai Y, Tang JG. Characteristic, activity and conformational studies of [A6‐Ser, A11‐Ser]‐insulin. Biochim Biophys Acta. 1996; 1296: 63 ‐ 68.
dc.identifier.citedreferenceWeiss MA, Hua QX, Jia W, Chu YC, Wang RY, Katsoyannis PG. Hierarchiacal protein “un‐design”: insulin’s intrachain disulfide bridge tethers a recognition a‐helix. Biochemistry. 2000; 39: 15429 ‐ 15440.
dc.identifier.citedreferenceGuo ZY, Feng YM. Effects of cysteine to serine substitutions in the two intra‐A‐chain disulfide bonds of insulin. Biol Chem. 2001; 382: 443 ‐ 448.
dc.identifier.citedreferenceFeng Y, Liu D, Wang J. Native‐like partially folded conformations and folding process revealed in the N‐terminal large fragments of staphylococcal nuclease: a study by NMR spectroscopy. J Mol Biol. 2003; 330: 821 ‐ 837.
dc.identifier.citedreferenceJia XY, Guo ZY, Wang Y, Xu Y, Duan SS, Feng YM. Peptide models of four possible insulin folding intermediates with two disulfides. Protein Sci. 2003; 12: 2412 ‐ 2419.
dc.identifier.citedreferenceYan H, Guo ZY, Gong XW, Xi D, Feng YM. A peptide model of insulin folding intermediate with one disulfide. Protein Sci. 2003; 12: 768 ‐ 775.
dc.identifier.citedreferenceHua QX, Mayer J, Jia W, Zhang J, Weiss MA. The folding nucleus of the insulin superfamily: a flexible peptide model foreshadows the native state. J Biol Chem. 2006; 281: 28131 ‐ 28142.
dc.identifier.citedreferenceHua QX, Chu YC, Jia W, et al. Mechanism of insulin chain combination. Asymmetric roles of A‐chain α‐helices in disulfide pairing. J Biol Chem. 2002; 277: 43443 ‐ 43453.
dc.identifier.citedreferenceHua QX, Jia W, Frank BH, Phillips NB, Weiss MA. A protein caught in a kinetic trap: structures and stabilities of insulin disulfide isomers. Biochemistry. 2002; 41: 14700 ‐ 14715.
dc.identifier.citedreferenceHua QX, Gozani SN, Chance RE, Hoffmann JA, Frank BH, Weiss MA. Structure of a protein in a kinetic trap. Nat Struct Biol. 1995; 2: 129 ‐ 138.
dc.identifier.citedreferenceHua QX, Nakagawa SH, Jia W, et al. Hierarchical protein folding: asymmetric unfolding of an insulin analogue lacking the A7‐B7 interchain disulfide bridge. Biochemistry. 2001; 40: 12299 ‐ 12311.
dc.identifier.citedreferenceChu YC, Burke GT, Chanley JD, Katsoyannis PG. Possible involvement of the A20‐A21 peptide bond in the expression of the biological activity of insulin. 2. [21‐Asparagine diethylamide‐A]insulin. Biochemistry. 1987; 26: 6972 ‐ 6975.
dc.identifier.citedreferenceKristensen C, Kjeldsen T, Wiberg FC, et al. Alanine scanning mutagenesis of insulin. J Biol Chem. 1997; 272: 12978 ‐ 12983.
dc.identifier.citedreferenceNakagawa SH, Hua QX, Hu SQ, et al. Chiral mutagenesis of insulin. Contribution of the B20‐B23 β‐turn to activity and stability. J Biol Chem. 2006; 281: 22386 ‐ 22396.
dc.identifier.citedreferenceGill R, Verma C, Wallach B, et al. Modelling of the disulphide‐swapped isomer of human insulin‐like growth factor‐1: implications for receptor binding. Protein Eng. 1999; 12: 297 ‐ 303.
dc.identifier.citedreferenceChen Y, You Y, Jin R, Guo ZY, Feng YM. Sequences of B‐chain/domain 1‐10/1‐9 of insulin and insulin‐like growth factor 1 determine their different folding behavior. Biochemistry. 2004; 43: 9225 ‐ 9233.
dc.identifier.citedreferenceHuang QL, Zhao J, Tang YH, Shao SQ, Xu GJ, Feng YM. The sequence determinant causing different folding behaviors of insulin and insulin‐like growth factor‐1. Biochemistry. 2007; 46: 218 ‐ 224.
dc.identifier.citedreferenceLiu M, Ramos‐Castaneda J, Arvan P. Role of the connecting peptide in insulin biosynthesis. J Biol Chem. 2003; 278: 14798 ‐ 14805.
dc.identifier.citedreferenceZhang BY, Liu M, Arvan P. Behavior in the eukaryotic secretory pathway of insulin‐containing fusion proteins and single‐chain insulins bearing various B‐chain mutations. J Biol Chem. 2003; 278: 3687 ‐ 3693.
dc.identifier.citedreferenceLiu M, Li Y, Cavener D, Arvan P. Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J Biol Chem. 2005; 280: 13209 ‐ 13212.
dc.identifier.citedreferenceHua QX, Liu M, Hu SQ, Jia W, Arvan P, Weiss MA. A conserved histidine in insulin is required for the foldability of human proinsulin. Structure and function of an Ala B5 analog. J Biol Chem. 2006; 281: 24889 ‐ 24899.
dc.identifier.citedreferenceLiu M, Hodish I, Rhodes CJ, Arvan P. Proinsulin maturation, misfolding, and proteotoxicity. Proc Natl Acad Sci U S A. 2007; 104: 15841 ‐ 15846.
dc.identifier.citedreferenceLiu M, Hua Q‐X, Hu S‐Q, et al. Deciphering the hidden informational content of protein sequences: foldability of proinsulin hinges on a flexible arm that is dispensable in the mature hormone. J Biol Chem. 2010; 285: 30989 ‐ 31001.
dc.identifier.citedreferenceBaker EN, Blundell TL, Cutfield JF, et al. The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philos Trans R Soc Lond B Biol Sci. 1988; 319: 369 ‐ 456.
dc.identifier.citedreferenceWeiss MA, Lawrence MC. Structural changes in the B chain of insulin on receptor binding and their evolutionary implicationsh. Diabetes Obes Metab. 2018; this issue.
dc.identifier.citedreferenceAdams MJ, Blundell TL, Dodson EJ, et al. Structure of rhombohedral 2 zinc insulin crystals. Nature. 1969; 224: 491 ‐ 495.
dc.identifier.citedreferencePandyarajan V, Phillips NB, Cox GP, et al. Biophysical optimization of a therapeutic protein by non‐standard mutagenesis. Studies of an iodo‐insulin derivative. J Biol Chem. 2014; 289: 23367 ‐ 23381.
dc.identifier.citedreferenceXu B, Huang K, Chu YC, et al. Decoding the cryptic active conformation of a protein by synthetic photoscanning: insulin inserts a detachable arm between receptor domains. J Biol Chem. 2009; 284: 14597 ‐ 14608.
dc.identifier.citedreferenceMenting JG, Whittaker J, Margetts MB, et al. How insulin engages its primary binding site on the insulin receptor. Nature. 2013; 493: 241 ‐ 245.
dc.identifier.citedreferencePandyarajan V, Phillips NB, Rege NK, Lawrence MC, Whittaker J, Weiss MA. Contribution of Tyr B26 to the function and stability of insulin. Structure‐activity relationships at a conserved hormone‐receptor interface. J Biol Chem. 2016; 291: 12978 ‐ 12990.
dc.identifier.citedreferenceMenting JG, Whittaker J, Margetts MB, et al. How insulin engages its primary binding site on the insulin receptor surface. Nature. 2013; 493: 241 ‐ 245.
dc.identifier.citedreferenceMirmira RG, Nakagawa SH, Tager HS. Importance of the character and configuration of residues B24, B25, and B26 in insulin‐receptor interactions. J Biol Chem. 1991; 266: 1428 ‐ 1436.
dc.identifier.citedreferenceHua QX, Shoelson SE, Kochoyan M, Weiss MA. Receptor binding redefined by a structural switch in a mutant human insulin. Nature. 1991; 354: 238 ‐ 241.
dc.identifier.citedreferenceHua QX, Xu B, Huang K, et al. Enhancing the activity of insulin by stereospecific unfolding. Conformational life cycle of insulin and its evolutionary origins. J Biol Chem. 2009; 284: 14586 ‐ 14596.
dc.identifier.citedreferenceHuang K, Xu B, Hu SQ, et al. How insulin binds: the B‐chain a‐helix contacts the L1 β‐helix of the insulin receptor. J Mol Biol. 2004; 341: 529 ‐ 550.
dc.identifier.citedreferenceXu B, Hu SQ, Chu YC, et al. Diabetes‐associated mutations in insulin: consecutive residues in the B chain contact distinct domains of the insulin receptor. Biochemistry. 2004; 43: 8356 ‐ 8372.
dc.identifier.citedreferenceStoy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007; 104: 15040 ‐ 15044.
dc.identifier.citedreferenceShoelson S, Fickova M, Haneda M, et al. Indentification of a mutant human insulin predicetd to contain a serine‐for ‐phenylalanine substitition. Proc Natl Acad Sci U S A. 1983; 80: 7390 ‐ 7394.
dc.identifier.citedreferenceHua QX, Shoelson SE, Inouye K, Weiss MA. Paradoxical structure and function in a mutant human insulin associated with diabetes mellitus. Proc Natl Acad Sci U S A. 1993; 90: 582 ‐ 586.
dc.identifier.citedreferenceNanjo K, Sanke T, Miyano M, et al. Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [Leu A3 ] insulin. J Clin Invest. 1986; 77: 514 ‐ 519.
dc.identifier.citedreferenceShoelson S, Haneda M, Blix P, et al. Three mutant insulins in man. Nature. 1983; 302: 540 ‐ 543.
dc.identifier.citedreferenceShoelson SE, Polonsky KS, Zeidler A, Rubenstein AH, Tager HS. Human insulin B24 (Phe®Ser), secretion and metabolic clearance of the abnormal insulin in man and in a dog model. J Clin Invest. 1984; 73: 1351 ‐ 1358.
dc.identifier.citedreferenceHaneda M, Polonsky KS, Bergenstal RM, et al. Familial hyperinsulinemia due to a structurally abnormal insulin. N Engl J Med. 1984; 310: 1288 ‐ 1294.
dc.identifier.citedreferenceStoy J, Steiner DF, Park SY, Ye H, Philipson LH, Bell GI. Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord. 2010; 11: 205 ‐ 215.
dc.identifier.citedreferenceMolven A, Ringdal M, Nordbo AM, et al. the Norwegian Childhood Diabetes Study Group, Mutations in the insulin gene can cause MODY and autoantibody‐negative type 1 diabetes. Diabetes. 2008; 57: 1131 ‐ 1135.
dc.identifier.citedreferenceHu SQ, Burke GT, Schwartz GP, Ferderigos N, Ross JB, Katsoyannis PG. Steric requirements at position B12 for high biological activity in insulin. Biochemistry. 1993; 32: 2631 ‐ 2635.
dc.identifier.citedreferenceColombo C, Porzio O, Liu M, et al. Early Onset Diabetes Study Group of the Italian Society of Pediatric Endocrinology and Diabetes (SIEDP). Seven mutations in the human insulin gene linked to permanent neonatal/infancy‐onset diabetes mellitus. J Clin Invest. 2008; 118: 2148 ‐ 2156.
dc.identifier.citedreferenceOlsen HB, Ludvigsen S, Kaarsholm NC. Solution structure of an engineered insulin monomer at neutral pH. Biochemistry. 1996; 35: 8836 ‐ 8845.
dc.identifier.citedreferenceBlundell TL, Cutfield JF, Cutfield SM, et al. Atomic positions in rhombohedral 2‐zinc insulin crystals. Nature. 1971; 231: 506 ‐ 511.
dc.identifier.citedreferenceWeiss MA. The structure and function of insulin: decoding the TR transition. In: Litwack G, ed. Vitamins and Hormones: Advances in Research and Application. Burlington, ON: Academic Press; 2009: 33 ‐ 49.
dc.identifier.citedreferenceDerewenda U, Derewenda Z, Dodson EJ, et al. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989; 338: 594 ‐ 596.
dc.identifier.citedreferenceNakagawa SH, Zhao M, Hua QX, et al. Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain. Biochemistry. 2005; 44: 4984 ‐ 4999.
dc.identifier.citedreferenceHua QX, Nakagawa SH, Hu SQ, Jia W, Wang S, Weiss MA. Toward the active conformation of insulin. Stereospecific modulation of a structural switch in the B chain. J Biol Chem. 2006; 281: 24900 ‐ 24909.
dc.identifier.citedreferenceWan Z, Huang K, Whittaker J, Weiss MA. The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition. J Biol Chem. 2008; 283: 21198 ‐ 21210.
dc.identifier.citedreferenceNoiva R. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol. 1999; 10: 481 ‐ 493.
dc.identifier.citedreferenceBetts S, King J. There’s a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure. 1999; 7: R131 ‐ R139.
dc.identifier.citedreferenceWeigele PR, Haase‐Pettingell C, Campbell PG, Gossard DC, King J. Stalled folding mutants in the triple β‐helix domain of the phage P22 tailspike adhesin. J Mol Biol. 2005; 354: 1103 ‐ 1117.
dc.identifier.citedreferenceWeiss MA, Nakagawa SH, Jia W, et al. Protein structure and the spandrels of San Marco: insulin’s receptor‐binding surface is buttressed by an invariant leucine essential for protein stability. Biochemistry. 2002; 41: 809 ‐ 819.
dc.identifier.citedreferenceDu X, Tang JG. Hydroxyl group of insulin A19Tyr is essential for receptor binding: studies on (A19Phe)insulin. Biochem Mol Biol Int. 1998; 45: 255 ‐ 260.
dc.identifier.citedreferenceLiu M, Wan ZL, Chu YC, et al. Crystal structure of a “non‐foldable” insulin: impaired folding efficiency and ER stress despite native activity. J Biol Chem. 2009; 284: 35259 ‐ 35272.
dc.identifier.citedreferenceOrtolani F, Piccinno E, Grasso V, et al. Diabetes associated with dominant insulin gene mutations: outcome of 24‐month, sensor‐augmented insulin pump treatment. Acta Diabetol. 2016; 53: 499 ‐ 501.
dc.identifier.citedreferenceRutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004; 14: 20 ‐ 28.
dc.identifier.citedreferenceScheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with beta‐cell failure and diabetes. Endocr Rev. 2008; 29: 317 ‐ 333.
dc.identifier.citedreferenceHan J, Kaufman RJ. Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes Dev. 2017; 31: 1417 ‐ 1438.
dc.identifier.citedreferenceBertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded‐protein response. Nat Cell Biol. 2000; 2: 326 ‐ 332.
dc.identifier.citedreferenceShen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002; 3: 99 ‐ 111.
dc.identifier.citedreferenceHarding HP, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001; 7: 1153 ‐ 1163.
dc.identifier.citedreferenceZhang W, Feng D, Li Y, Iida K, McGrath B, Cavener DR. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 2006; 4: 491 ‐ 497.
dc.identifier.citedreferenceSowers CR, Wang R, Bourne RA, et al. The protein kinase PERK/EIF2AK3 regulates proinsulin processing not via protein synthesis but by controlling endoplasmic reticulum chaperones. J Biol Chem. 2018; 293: 5134 ‐ 5149.
dc.identifier.citedreferenceHarding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic‐reticulum‐resident kinase. Nature. 1999; 397: 271 ‐ 274.
dc.identifier.citedreferenceYong J, Grankvist N, Han J, Kaufman RJ. Eukaryotic translation initiation factor 2 α phosphorylation as a therapeutic target in diabetes. Expert Rev Endocrinol Metab. 2014; 9: 345 ‐ 356.
dc.identifier.citedreferenceScheuner D, Song B, McEwen E, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001; 7: 1165 ‐ 1176.
dc.identifier.citedreferenceScheuner D, Vander Mierde D, Song B, et al. Control of mRNA translation preserves reticulum function in beta cells and maintains glucose homeostasis. Nat Med. 2005; 11: 757 ‐ 764.
dc.identifier.citedreferenceBack SH, Scheuner D, Han J, et al. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 2009; 10: 13 ‐ 26.
dc.identifier.citedreferenceHan J, Song B, Kim J, et al. Antioxidants complement the requirement for protein chaperone function to maintain beta‐cell function and glucose homeostasis. Diabetes. 2015; 64: 2892 ‐ 2904.
dc.identifier.citedreferenceOyadomari S, Koizumi A, Takeda K, et al. Targeted disruption of the CHOP gene delays endoplasmic reticulum stress‐mediated diabetes. J Clin Invest. 2002; 109: 525 ‐ 532.
dc.identifier.citedreferenceSong B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest. 2008; 118: 3378 ‐ 3389.
dc.identifier.citedreferenceLee K, Tirasophon W, Shen X, et al. IRE1‐mediated unconventional mRNA splicing and S2P‐mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002; 16: 452 ‐ 466.
dc.identifier.citedreferenceWu J, Rutkowski DT, Dubois M, et al. ATF6alpha optimizes long‐term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell. 2007; 13: 351 ‐ 364.
dc.identifier.citedreferenceOdisho T, Zhang L, Volchuk A. ATF6beta regulates the Wfs1 gene and has a cell survival role in the ER stress response in pancreatic beta‐cells. Exp Cell Res. 2015; 330: 111 ‐ 122.
dc.identifier.citedreferenceLee AH, Iwakoshi NN, Glimcher LH. XBP‐1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003; 23: 7448 ‐ 7459.
dc.identifier.citedreferenceLee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008; 320: 1492 ‐ 1496.
dc.identifier.citedreferenceHassler JR, Scheuner DL, Wang S, et al. The IRE1alpha/XBP1s pathway is essential for the glucose response and protection of beta cells. PLoS Biol. 2015; 13: e1002277.
dc.identifier.citedreferenceUsui M, Yamaguchi S, Tanji Y, et al. Atf6alpha‐null mice are glucose intolerant due to pancreatic beta‐cell failure on a high‐fat diet but partially resistant to diet‐induced insulin resistance. Metabolism. 2012; 61: 1118 ‐ 1128.
dc.identifier.citedreferenceEngin F, Yermalovich A, Nguyen T, et al. Restoration of the unfolded protein response in pancreatic beta cells protects mice against type 1 diabetes. Sci Transl Med. 2013; 5: 211ra156.
dc.identifier.citedreferenceSharma RB, O’Donnell AC, Stamateris RE, et al. Insulin demand regulates beta cell number via the unfolded protein response. J Clin Invest. 2015; 125: 3831 ‐ 3846.
dc.identifier.citedreferenceBack SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem. 2012; 81: 767 ‐ 793.
dc.identifier.citedreferenceYoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K. A time‐dependent phase shift in the mammalian unfolded protein response. Dev Cell. 2003; 4: 265 ‐ 271.
dc.identifier.citedreferenceOda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K. Derlin‐2 and Derlin‐3 are regulated by the mammalian unfolded protein response and are required for ER‐associated degradation. J Cell Biol. 2006; 172: 383 ‐ 393.
dc.identifier.citedreferenceYamamoto K, Sato T, Matsui T, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007; 13: 365 ‐ 376.
dc.identifier.citedreferenceQi L, Tsai B, Arvan P. New insights into the physiological role of endoplasmic reticulum‐associated degradation. Trends Cell Biol. 2017; 27: 430 ‐ 440.
dc.identifier.citedreferenceHaataja L, Manickam N, Soliman A, Tsai B, Liu M, Arvan P. Disulfide mispairing during proinsulin folding in the endoplasmic reticulum. Diabetes. 2016; 65: 1050 ‐ 1060.
dc.identifier.citedreferenceRutkevich LA, Cohen‐Doyle MF, Brockmeier U, Williams DB. Functional relationship between protein disulfide isomerase family members during the oxidative folding of human secretory proteins. Mol Biol Cell. 2010; 21: 3093 ‐ 3105.
dc.identifier.citedreferenceGorasia DG, Dudek NL, Safavi‐Hemami H, et al. A prominent role of PDIA6 in processing of misfolded proinsulin. Biochim Biophys Acta. 2016; 1864: 715 ‐ 723.
dc.identifier.citedreferenceLan H, Rabaglia ME, Schueler KL, Mata C, Yandell BS, Attie AD. Distinguishing covariation from causation in diabetes: a lesson from the protein disulfide isomerase mRNA abundance trait. Diabetes. 2004; 53: 240 ‐ 244.
dc.identifier.citedreferenceIida KI, Miyaishi O, Iwata Y, Kozaki KI, Matsuyama M, Saga S. Distinct distribution of protein disulfide isomerase family proteins in rat tissues. J Histochem Cytochem. 1996; 44: 751 ‐ 759.
dc.identifier.citedreferenceLu H, Yang Y, Allister EM, Wijesekara N, Wheeler MB. The identification of potential factors associated with the development of type 2 diabetes: a quantitative proteomics approach. Mol Cell Proteomics. 2008; 7: 1434 ‐ 1451.
dc.identifier.citedreferenceYang K, Gotzmann J, Kuny S, Huang H, Sauve Y, Chan CB. Five stages of progressive beta‐cell dysfunction in the laboratory Nile rat model of type 2 diabetes. J Endocrinol. 2016; 229: 343 ‐ 356.
dc.identifier.citedreferenceFeng D, Wei J, Gupta S, McGrath BC, Cavener DR. Acute ablation of PERK results in ER dysfunctions followed by reduced insulin secretion and cell proliferation. BMC Cell Biol. 2009; 10: 61.
dc.identifier.citedreferenceWinter J, Gleiter S, Klappa P, Lilie H. Protein disulfide isomerase isomerizes non‐native disulfide bonds in human proinsulin independent of its peptide‐binding activity. Protein Sci. 2011; 20: 588 ‐ 596.
dc.identifier.citedreferenceWinter J, Klappa P, Freedman RB, Lilie H, Rudolph R. Catalytic activity and chaperone function of human protein‐disulfide isomerase are required for the efficient refolding of proinsulin. J Biol Chem. 2002; 277: 310 ‐ 317.
dc.identifier.citedreferenceRajpal G, Schuiki I, Liu M, Volchuk A, Arvan P. Action of protein disulfide isomerase on proinsulin exit from endoplasmic reticulum of pancreatic beta‐cells. J Biol Chem. 2012; 287: 43 ‐ 47.
dc.identifier.citedreferenceHe K, Cunningham CN, Manickam N, Liu M, Arvan P, Tsai B. PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L‐p97 axis. Mol Biol Cell. 2015; 26: 3413 ‐ 3423.
dc.identifier.citedreferenceDias‐Gunasekara S, Gubbens J, van Lith M, et al. Tissue‐specific expression and dimerization of the endoplasmic reticulum oxidoreductase Ero1beta. J Biol Chem. 2005; 280: 33066 ‐ 33075.
dc.identifier.citedreferenceZito E, Chin KT, Blais J, Harding HP, Ron D. ERO1‐beta, a pancreas‐specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J Cell Biol. 2010; 188: 821 ‐ 832.
dc.identifier.citedreferenceZito E. ERO1: a protein disulfide oxidase and H2O2 producer. Free Radic Biol Med. 2015; 83: 299 ‐ 304.
dc.identifier.citedreferenceKhoo C, Yang J, Rajpal G, et al. Endoplasmic reticulum oxidoreductase‐1‐like‐beta (ERO1l‐beta) regulates susceptibility to endoplasmic reticulum stress and is induced by insulin flux in beta‐cells. Endocrinology. 2011; 152: 2599 ‐ 2608.
dc.identifier.citedreferenceDelaunay‐Moisan A, Ponsero A, Toledano MB. Reexamining the function of glutathione in oxidative protein folding and secretion. Antioxid Redox Signal. 2017; 27: 1178 ‐ 1199.
dc.identifier.citedreferenceZhu L, Yang K, Wang X, Wang X, Wang CC. A novel reaction of peroxiredoxin 4 towards substrates in oxidative protein folding. PLoS One. 2014; 9: e105529.
dc.identifier.citedreferenceTu BP, Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004; 164: 341 ‐ 346.
dc.identifier.citedreferenceKonno T, Pinho Melo E, Lopes C, et al. ERO1‐independent production of H2O2 within the endoplasmic reticulum fuels Prdx4‐mediated oxidative protein folding. J Cell Biol. 2015; 211: 253 ‐ 259.
dc.identifier.citedreferenceLortz S, Lenzen S, Mehmeti I. Impact of scavenging hydrogen peroxide in the endoplasmic reticulum for beta cell function. J Mol Endocrinol. 2015; 55: 21 ‐ 29.
dc.identifier.citedreferenceAwazawa M, Futami T, Sakada M, et al. Deregulation of pancreas‐specific oxidoreductin ERO1beta in the pathogenesis of diabetes mellitus. Mol Cell Biol. 2014; 34: 1290 ‐ 1299.
dc.identifier.citedreferenceDing Y, Yamada S, Wang KY, et al. Overexpression of peroxiredoxin 4 protects against high‐dose streptozotocin‐induced diabetes by suppressing oxidative stress and cytokines in transgenic mice. Antioxid Redox Signal. 2010; 13: 1477 ‐ 1490.
dc.identifier.citedreferenceMehmeti I, Lortz S, Elsner M, Lenzen S. Peroxiredoxin 4 improves insulin biosynthesis and glucose‐induced insulin secretion in insulin‐secreting INS‐1E cells. J Biol Chem. 2014; 289: 26904 ‐ 26913.
dc.identifier.citedreferenceDreja T, Jovanovic Z, Rasche A, et al. Diet‐induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia. 2010; 53: 309 ‐ 320.
dc.identifier.citedreferenceMalhotra JD, Miao H, Zhang K, et al. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A. 2008; 105: 18525 ‐ 18530.
dc.identifier.citedreferencePi J, Bai Y, Zhang Q, et al. Reactive oxygen species as a signal in glucose‐stimulated insulin secretion. Diabetes. 2007; 56: 1783 ‐ 1791.
dc.identifier.citedreferenceFlynn GC, Pohl J, Flocco MT, Rothman JE. Peptide‐binding specificity of the molecular chaperone BiP. Nature (London). 1991; 353: 726 ‐ 730.
dc.identifier.citedreferenceHendershot LM, Wei JY, Gaut JR, Lawson B, Freiden PJ, Murti KG. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol Biol Cell. 1995; 6: 283 ‐ 296.
dc.identifier.citedreferenceKim P, Bole D, Arvan P. Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP. J Cell Biol. 1992; 118: 541 ‐ 549.
dc.identifier.citedreferenceMarquardt T, Helenius A. Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. J Cell Biol. 1992; 117: 505 ‐ 513.
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ. Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. Proc Natl Acad Sci U S A. 1990; 87: 7429 ‐ 7432.
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ. Overexpression of GRP78 mitigates induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 1992; 11: 1563 ‐ 1571.
dc.identifier.citedreferenceMuresan Z, Arvan P. Thyroglobulin transport along the secretory pathway. Investigation of the role of molecular chaperone, GRP94, in protein export from the endoplasmic reticulum. J Biol Chem. 1997; 272: 26095 ‐ 26102.
dc.identifier.citedreferencePetrova K, Oyadomari S, Hendershot LM, Ron D. Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. EMBO J. 2008; 27: 2862 ‐ 2872.
dc.identifier.citedreferenceLadiges WC, Knoblaugh SE, Morton JF, et al. Pancreatic beta‐cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005; 54: 1074 ‐ 1081.
dc.identifier.citedreferenceOyadomari S, Yun C, Fisher EA, et al. Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell. 2006; 126: 727 ‐ 739.
dc.identifier.citedreferenceRutkowski DT, Kang SW, Goodman AG, et al. The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell. 2007; 18: 3681 ‐ 3691.
dc.identifier.citedreferenceSynofzik M, Haack TB, Kopajtich R, et al. Absence of BiP co‐chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet. 2014; 95: 689 ‐ 697.
dc.identifier.citedreferenceKaufman RJ, Malhotra JD. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta. 2014; 1843: 2233 ‐ 2239.
dc.identifier.citedreferenceSabourin J, Le Gal L, Saurwein L, Haefliger JA, Raddatz E, Allagnat F. Store‐operated Ca 2+ entry mediated by Orai1 and TRPC1 participates to insulin secretion in rat beta‐cells. J Biol Chem. 2015; 290: 30530 ‐ 30539.
dc.identifier.citedreferenceGilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic beta‐cells in health and in type 2 diabetes. Cell Calcium. 2014; 56: 340 ‐ 361.
dc.identifier.citedreferenceKono T, Ahn G, Moss DR, et al. PPAR‐gamma activation restores pancreatic islet SERCA2 levels and prevents beta‐cell dysfunction under conditions of hyperglycemic and cytokine stress. Mol Endocrinol. 2012; 26: 257 ‐ 271.
dc.identifier.citedreferenceArredouani A, Guiot Y, Jonas JC, et al. SERCA3 ablation does not impair insulin secretion but suggests distinct roles of different sarcoendoplasmic reticulum Ca 2+ pumps for Ca 2+ homeostasis in pancreatic beta‐cells. Diabetes. 2002; 51: 3245 ‐ 3253.
dc.identifier.citedreferenceRavier MA, Daro D, Roma LP, et al. Mechanisms of control of the free Ca 2+ concentration in the endoplasmic reticulum of mouse pancreatic beta‐cells: interplay with cell metabolism and [Ca 2+ ]c and role of SERCA2b and SERCA3. Diabetes. 2011; 60: 2533 ‐ 2545.
dc.identifier.citedreferenceCoe H, Michalak M. Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys. 2009; 28: F96 ‐ F103.
dc.identifier.citedreferenceVaradi A, Lebel L, Hashim Y, Mehta Z, Ashcroft SJ, Turner R. Sequence variants of the sarco(endo)plasmic reticulum Ca(2+)‐transport ATPase 3 gene (SERCA3) in Caucasian type II diabetic patients (UK Prospective Diabetes Study 48). Diabetologia. 1999; 42: 1240 ‐ 1243.
dc.identifier.citedreferenceGutierrez T, Simmen T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium. 2018; 70: 64 ‐ 75.
dc.identifier.citedreferenceRizzuto R, Duchen MR, Pozzan T. Flirting in little space: the ER/mitochondria Ca 2+ liaison. Sci STKE. 2004; 2004: re1.
dc.identifier.citedreferenceLipson KL, Fonseca SG, Ishigaki S, et al. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum‐resident protein kinase IRE1. Cell Metab. 2006; 4: 245 ‐ 254.
dc.identifier.citedreferenceSun J, Cui J, He Q, Chen Z, Arvan P, Liu M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol Aspects Med. 2015; 42: 105 ‐ 118.
dc.identifier.citedreferenceYoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early‐onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997; 46: 887 ‐ 894.
dc.identifier.citedreferenceKayo T, Koizumi A. Mapping of murine diabetogenic gene mody on chromosome 7 at D7Mit258 and its involvement in pancreatic islet and beta cell development during the perinatal period. J Clin Invest. 1998; 101: 2112 ‐ 2118.
dc.identifier.citedreferenceIzumi T, Yokota‐Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes. 2003; 52: 409 ‐ 416.
dc.identifier.citedreferenceWang J, Chen Y, Yuan Q, Tang W, Zhang X, Osei K. Control of precursor maturation and disposal is an early regulative mechanism in the normal insulin production of pancreatic beta‐cells. PLoS One. 2011; 6: e19446.
dc.identifier.citedreferenceWeiss MA. Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Lett. 2013; 587: 1942 ‐ 1950.
dc.identifier.citedreferenceBonfanti R, Colombo C, Nocerino V, et al. Insulin gene mutations as cause of diabetes in children negative for five type 1 diabetes autoantibodies. Diabetes Care. 2009; 32: 123 ‐ 125.
dc.identifier.citedreferenceRenner S, Braun‐Reichhart C, Blutke A, et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes. 2013; 62: 1505 ‐ 1511.
dc.identifier.citedreferenceBlutke A, Renner S, Flenkenthaler F, et al. The Munich MIDY pig biobank – a unique resource for studying organ crosstalk in diabetes. Mol Metab. 2017; 6: 931 ‐ 940.
dc.identifier.citedreferenceHodish I, Absood A, Liu L, et al. In vivo misfolding of proinsulin below the threshold of frank diabetes. Diabetes. 2011; 60: 2092 ‐ 2101.
dc.identifier.citedreferenceBarbetti F, Colombo C, Haataja L, Cras‐Meneur C, Bernardini S, Arvan P. Hyperglucagonemia in an animal model of insulin‐ deficient diabetes: what therapy can improve it? Clin Diabetes Endocrinol. 2016; 2: 11.
dc.identifier.citedreferenceLiu M, Haataja L, Wright J, et al. Mutant INS‐gene induced diabetes of youth: proinsulin cysteine residues impose dominant‐negative inhibition on wild‐type proinsulin transport. PLoS One. 2010; 5: e13333.
dc.identifier.citedreferenceHodish I, Liu M, Rajpal G, et al. Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem. 2010; 285: 685 ‐ 694.
dc.identifier.citedreferenceHaataja L, Snapp E, Wright J, et al. Proinsulin intermolecular interactions during secretory trafficking in pancreatic beta cells. J Biol Chem. 2013; 288: 1896 ‐ 1906.
dc.identifier.citedreferenceRajan S, Eames SC, Park SY, et al. In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. Am J Physiol Endocrinol Metab. 2010; 298: E403 ‐ E410.
dc.identifier.citedreferenceHaber EP, Procopio J, Carvalho CR, Carpinelli AR, Newsholme P, Curi R. New insights into fatty acid modulation of pancreatic beta‐cell function. Int Rev Cytol. 2006; 248: 1 ‐ 41.
dc.identifier.citedreferenceBachar E, Ariav Y, Ketzinel‐Gilad M, Cerasi E, Kaiser N, Leibowitz G. Glucose amplifies fatty acid‐induced endoplasmic reticulum stress in pancreatic beta‐cells via activation of mTORC1. PLoS One. 2009; 4: e4954.
dc.identifier.citedreferenceRiserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res. 2009; 48: 44 ‐ 51.
dc.identifier.citedreferenceGwiazda KS, Yang TL, Lin Y, Johnson JD. Effects of palmitate on ER and cytosolic Ca 2+ homeostasis in beta‐cells. Am J Physiol Endocrinol Metab. 2009; 296: E690 ‐ E701.
dc.identifier.citedreferenceWikstrom JD, Israeli T, Bachar‐Wikstrom E, et al. AMPK regulates ER morphology and function in stressed pancreatic beta‐cells via phosphorylation of DRP1. Mol Endocrinol. 2013; 27: 1706 ‐ 1723.
dc.identifier.citedreferenceCassel R, Ducreux S, Alam MR, et al. Protection of human pancreatic islets from lipotoxicity by modulation of the translocon. PLoS One. 2016; 11: e0148686.
dc.identifier.citedreferenceSzabat M, Page MM, Panzhinskiy E, et al. Reduced insulin production relieves endoplasmic reticulum stress and induces beta cell proliferation. Cell Metab. 2016; 23: 179 ‐ 193.
dc.identifier.citedreferenceZhao H, Matsuzaka T, Nakano Y, et al. Elovl6 deficiency improves glycemic control in diabetic db/db mice by expanding beta‐cell mass and increasing insulin secretory capacity. Diabetes. 2017; 66: 1833 ‐ 1846.
dc.identifier.citedreferenceTran K, Li Y, Duan H, Arora D, Lim HY, Wang W. Identification of small molecules that protect pancreatic beta cells against endoplasmic reticulum stress‐induced cell death. ACS Chem Biol. 2014; 9: 2796 ‐ 2806.
dc.identifier.citedreferenceEguchi K, Manabe I, Oishi‐Tanaka Y, et al. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab. 2012; 15: 518 ‐ 533.
dc.identifier.citedreferenceTersey SA, Bolanis E, Holman TR, Maloney DJ, Nadler JL, Mirmira RG. Minireview: 12‐lipoxygenase and islet beta‐cell dysfunction in diabetes. Mol Endocrinol. 2015; 29: 791 ‐ 800.
dc.identifier.citedreferenceLombardi A, Tomer Y. Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress. J Autoimmun. 2017; 80: 48 ‐ 55.
dc.identifier.citedreferenceRamadan JW, Steiner SR, O’Neill CM, Nunemaker CS. The central role of calcium in the effects of cytokines on beta‐cell function: implications for type 1 and type 2 diabetes. Cell Calcium. 2011; 50: 481 ‐ 490.
dc.identifier.citedreferenceCardozo AK, Ortis F, Storling J, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca 2+ ATPase 2b and deplete endoplasmic reticulum Ca 2+, leading to induction of endoplasmic reticulum stress in pancreatic beta‐cells. Diabetes. 2005; 54: 452 ‐ 461.
dc.identifier.citedreferenceBrozzi F, Nardelli TR, Lopes M, et al. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia. 2015; 58: 2307 ‐ 2316.
dc.identifier.citedreferenceTong X, Kono T, Anderson‐Baucum EK, et al. SERCA2 deficiency impairs pancreatic beta‐cell function in response to diet‐induced obesity. Diabetes. 2016; 65: 3039 ‐ 3052.
dc.identifier.citedreferenceLortz S, Gurgul‐Convey E, Naujok O, Lenzen S. Overexpression of the antioxidant enzyme catalase does not interfere with the glucose responsiveness of insulin‐secreting INS‐1E cells and rat islets. Diabetologia. 2013; 56: 774 ‐ 782.
dc.identifier.citedreferenceOyadomari S, Takeda K, Takiguchi M, et al. Nitric oxide‐induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci U S A. 2001; 98: 10845 ‐ 10850.
dc.identifier.citedreferenceEizirik DL, Sandler S, Welsh N, et al. Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. J Clin Invest. 1994; 93: 1968 ‐ 1974.
dc.identifier.citedreferencePappalardo Z, Gambhir Chopra D, Hennings TG, et al. A whole‐genome RNA interference screen reveals a role for Spry2 in insulin transcription and the unfolded protein response. Diabetes. 2017; 66: 1703 ‐ 1712.
dc.identifier.citedreferenceHostens K, Pavlovic D, Zambre Y, et al. Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J Clin Invest. 1999; 104: 67 ‐ 72.
dc.identifier.citedreferenceLarsen CM, Faulenbach M, Vaag A, et al. Interleukin‐1‐receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007; 356: 1517 ‐ 1526.
dc.identifier.citedreferenceLerner AG, Upton JP, Praveen PV, et al. IRE1alpha induces thioredoxin‐interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012; 16: 250 ‐ 264.
dc.identifier.citedreferenceCianciaruso C, Phelps EA, Pasquier M, et al. Primary human and rat beta‐cells release the intracellular autoantigens GAD65, IA‐2, and proinsulin in exosomes together with cytokine‐induced enhancers of immunity. Diabetes. 2017; 66: 460 ‐ 473.
dc.identifier.citedreferenceTaylor RC, Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol. 2011; 3:(5)pii: a004440. https://doi.org/10.1101/cshperspect.a004440
dc.identifier.citedreferenceChang AM, Halter JB. Aging and insulin secretion. Am J Physiol Endocrinol Metab. 2003; 284: E7 ‐ E12.
dc.identifier.citedreferenceRudenski AS, Hadden DR, Atkinson AB, et al. Natural history of pancreatic islet B‐cell function in type 2 diabetes mellitus studied over six years by homeostasis model assessment. Diabet Med. 1988; 5: 36 ‐ 41.
dc.identifier.citedreferenceSzoke E, Shrayyef MZ, Messing S, et al. Effect of aging on glucose homeostasis: accelerated deterioration of beta‐cell function in individuals with impaired glucose tolerance. Diabetes Care. 2008; 31: 539 ‐ 543.
dc.identifier.citedreferenceChiu KC, Martinez DS, Chu A. Comparison of the relationship of age and beta cell function in three ethnic groups. Clin Endocrinol (Oxf). 2005; 62: 296 ‐ 302.
dc.identifier.citedreferenceMuzumdar R, Ma X, Atzmon G, Vuguin P, Yang X, Barzilai N. Decrease in glucose‐stimulated insulin secretion with aging is independent of insulin action. Diabetes. 2004; 53: 441 ‐ 446.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.