Show simple item record

Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes

dc.contributor.authorRios, Peter D.
dc.contributor.authorSkoumal, Michael
dc.contributor.authorLiu, Jeffrey
dc.contributor.authorYoungblood, Richard
dc.contributor.authorKniazeva, Ekaterina
dc.contributor.authorGarcia, Andräs J.
dc.contributor.authorShea, Lonnie D.
dc.date.accessioned2018-11-20T15:35:51Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09
dc.identifier.citationRios, Peter D.; Skoumal, Michael; Liu, Jeffrey; Youngblood, Richard; Kniazeva, Ekaterina; Garcia, Andräs J. ; Shea, Lonnie D. (2018). "Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes." Biotechnology and Bioengineering 115(9): 2356-2364.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/146483
dc.description.abstractIslet transplantation is a promising therapeutic option for type 1 diabetes mellitus, yet the current delivery into the hepatic portal vasculature is limited by poor engraftment. Biomaterials have been used as a means to promote engraftment and function at extrahepatic sites, with strategies being categorized as encapsulation or microporous scaffolds that can either isolate or integrate islets with the host tissue, respectively. Although these approaches are typically studied separately using distinct material platforms, herein, we developed nondegradable polyethylene glycol (PEG)‐based hydrogels for islet encapsulation or as microporous scaffolds for islet seeding to compare the initial engraftment and function of islets in syngeneic diabetic mice. Normoglycemia was restored with transplantation of islets within either encapsulating or microporous hydrogels containing 700 islet equivalents (IEQ), with transplantation on microporous hydrogels producing lower blood glucose levels at earlier times. A glucose challenge test at 1 month after transplant indicated that encapsulated islets had a delay in glucose‐stimulated insulin secretion, whereas microporous hydrogels restored normoglycemia in times consistent with native pancreata. Encapsulated islets remained isolated from the host tissue, whereas the microporous scaffolds allowed for revascularization of the islets after transplant. Finally, we compared the inflammatory response after transplantation for the two systems and noted that microporous hydrogels had a substantially increased presence of neutrophils. Collectively, these findings suggest that both encapsulation and microporous PEG scaffold designs allow for stable engraftment of syngeneic islets and the ability to restore normoglycemia, yet the architecture influences islet function and responsiveness after transplantation.Non‐degradable PEG hydrogels were developed for islet encapsulation or islet seeding to compare engraftment. Using a syngeneic rodent model of diabetes, normoglycemia was restored using either encapsulating or microporous scaffolds containing 700 islet equivalent, with microporous hydrogels achieving lower blood glucose levels at earlier time points. Characterization of the inflammatory response demonstrated microporous scaffolds had a substantially increased presence of neutrophils. These studies confirm both scaffold designs allow for engraftment, yet the architecture influences islet function and responsiveness post‐transplantation.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpolyethylene glycol (PEG)
dc.subject.otherhydrogel
dc.subject.othermicroporous
dc.subject.otherEncapsulating
dc.titleEvaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146483/1/bit26741.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146483/2/bit26741_am.pdf
dc.identifier.doi10.1002/bit.26741
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceLynn, A. D., Kyriakides, T. R., & Bryant, S. J. ( 2010 ). Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)‐based hydrogels. Journal of Biomedical Materials Research, Part A, 93A, 941 – 953. https://doi.org/http://dx.org/10.1002/jbm.a.32595.
dc.identifier.citedreferencePedraza, E., Brady, A. ‐C., Fraker, C. A., Molano, R. D., Sukert, S., Berman, D. M., … Stabler, C. L. ( 2013 ). Macroporous three dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transplantation, 22, 1123 – 1135. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429907/.
dc.identifier.citedreferenceLin, C. ‐C., & Anseth, K. S. ( 2009 ). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26, 631 – 643. https://doi.org/.org/10.1007/s11095‐008‐9801‐2.
dc.identifier.citedreferenceLiu, J. M. H., Zhang, J., Zhang, X., Hlavaty, K. A., Ricci, C. F., Leonard, J. N., … Gower, R. M. ( 2016 ). Transforming growth factor‐beta 1 delivery from microporous scaffolds decreases inflammation post‐implant and enhances function of transplanted islets. Biomaterials, 80, 11 – 19. http://www.sciencedirect.com/science/article/pii/S0142961215009758.
dc.identifier.citedreferenceLynn, A. D., Blakney, A. K., Kyriakides, T. R., & Bryant, S. J. ( 2011 ). Temporal progression of the host response to implanted poly(ethylene glycol)‐based hydrogels. Journal of Biomedical Materials Research, Part A, 96A, 621 – 631. https://doi.org/http://dx.org/10.1002/jbm.a.33015.
dc.identifier.citedreferenceLynn, A. D., & Bryant, S. J. ( 2011 ). Phenotypic changes in bone marrow‐derived murine macrophages cultured on PEG‐based hydrogels activated or not by lipopolysaccharide. Acta Biomaterialia, 7, 123 – 132. https://www.sciencedirect.com/science/article/pii/S1742706110003533.
dc.identifier.citedreferenceMcWhorter, F. Y., Davis, C. T., & Liu, W. F. ( 2015 ). Physical and mechanical regulation of macrophage phenotype and function. Cellular and Molecular Life Science, 72, 1303 – 1316. https://doi.org/.org/10.1007/s00018‐014‐1796‐8.
dc.identifier.citedreferenceZhu, J. ( 2010 ). Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31, 4639 – 4656. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2907908&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceYang, H. K., & Yoon, K. ‐H. ( 2015 ). Current status of encapsulated islet transplantation. Journal of Diabetes and Its Complications, 29, 737 – 743. http://www.ncbi.nlm.nih.gov/pubmed/25881917.
dc.identifier.citedreferenceWeber, L. M., Lopez, C. G., & Anseth, K. S. ( 2009 ). Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. Journal of Biomedical Materials Research. Part A, 90, 720 – 729. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2913724&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceWeaver, J. D., Headen, D. M., Aquart, J., Johnson, C. T., Shea, L. D., Shirwan, H., & García, A. J. ( 2017 ). Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science Advances, 3, e1700184. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457148/.
dc.identifier.citedreferenceSong, S., & Roy, S. ( 2015 ). Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnology and Bioengineering, 113, 1381 – 1402. http://www.readcube.com/articles/10.1002%2Fbit.25895?r3_referer=wol&tracking_action=preview_click&show_checkout=1&purchase_referrer=onlinelibrary.wiley.com&purchase_site_license=LICENSE_DENIED.
dc.identifier.citedreferenceSmink, A. M., Hertsig, D. T., Schwab, L., Van Apeldoorn, A. A., De Koning, E., Faas, M. M., … De Vos, P. ( 2017 ). A retrievable, efficacious polymeric scaffold for subcutaneous transplantation of rat pancreatic islets. Annals of Surgery, 266, 149 – 157.
dc.identifier.citedreferenceShikanov, A., Smith, R. M., Xu, M., Woodruff, T. K., & Shea, L. D. ( 2011 ). Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials, 32, 2524 – 2531. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3040241&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceShapiro, A. M. J., Pokrywczynska, M., & Ricordi, C. ( 2016 ). Clinical pancreatic islet transplantation. Nature Reviews Endocrinology, 13, 268 – 277. https://doi.org/http://dx.org/10.1038/nrendo.2016.178.
dc.identifier.citedreferenceSelders, G. S., Fetz, A. E., Radic, M. Z., & Bowlin, G. L. ( 2017 ). An overview of the role of neutrophils in innate immunity, inflammation and host‐biomaterial integration. Regenerative Biomaterials, 4, 55 – 68. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5274707/.
dc.identifier.citedreferenceRyan, E. A, Paty, B. W., Senior, P. A, Bigam, D., Alfadhli, E., Kneteman, N. M., … Shapiro, aM. J. ( 2005 ). Five‐year follow‐up after clinical islet transplantation. Diabetes, 54, 2060 – 2069. http://www.ncbi.nlm.nih.gov/pubmed/15983207.
dc.identifier.citedreferenceRios, P. D., Zhang, X., Luo, X., & Shea, L. D. ( 2016 ). Mold‐casted non‐degradable, islet macro‐encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice. Biotechnology and Bioengineering, 113, 2485 – 2495. http://www.ncbi.nlm.nih.gov/pubmed/27159557.
dc.identifier.citedreferencePhelps, E. A, Headen, D. M., Taylor, W. R., Thulé, P. M., & García, A. J. ( 2013 ). Vasculogenic bio‐synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials, 34, 4602 – 4611. http://www.ncbi.nlm.nih.gov/pubmed/23541111.
dc.identifier.citedreferencePepper, A. R., Gala‐Lopez, B., Ziff, O., & Shapiro, A. M. J. ( 2013 ). Revascularization of transplanted pancreatic islets and role of the transplantation site. Clinical and Developmental Immunology, 2013, 352315 – 13. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782812/.
dc.identifier.citedreferenceApeldoorn, G. M., Van Gurp, L., Van Krieken, P. P., Stamatialis, D., Engelse, M., Van blitterswijk, C. A., … Van apeldoorn, A. A. ( 2015 ). Fabrication of three‐dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication, 7, 25009. http://stacks.iop.org/1758‐5090/7/i=2/a=025009.
dc.identifier.citedreferenceAnderson, J. M., Rodriguez, A., & Chang, D. T. ( 2008 ). Foreign body reaction to biomaterials. Seminars in Immunology, 20, 86 – 100. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2327202/.
dc.identifier.citedreferenceBerman, D. M., Molano, R. D., Fotino, C., Ulissi, U., Gimeno, J., Mendez, A. J., … Pileggi, A. ( 2016 ). Bioengineering the endocrine pancreas: Intraomental Islet transplantation within a biologic resorbable scaffold. Diabetes, 65, 1350 – 1361. http://www.ncbi.nlm.nih.gov/pubmed/26916086.
dc.identifier.citedreferenceBlakney, A. K., Swartzlander, M. D., & Bryant, S. J. ( 2012 ). The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)‐based hydrogels. Journal of Biomedical Materials Research. Part A, 100, 1375 – 1386. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339197/.
dc.identifier.citedreferenceBlomeier, H., Zhang, X., Rives, C., Brissova, M., Hughes, E., Baker, M., … Lowe, W. L. ( 2006 ). Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation. Transplantation, 82, 452 – 459. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2648394&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceBratlie, K. M., York, R. L., Invernale, M. A., Langer, R., & Anderson, D. G. ( 2012 ). Materials for diabetes therapeutics. Advanced Healthcare Materials, 1, 267 – 284 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899887/.
dc.identifier.citedreferenceBrennan, D. C., Kopetskie, H. A., Sayre, P. H., Alejandro, R., Cagliero, E., Shapiro, A. M. J., … Bianchine, P. J. ( 2016 ). Long‐term follow‐up of the edmonton protocol of islet transplantation in the United States. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 16, 509 – 517. http://www.ncbi.nlm.nih.gov/pubmed/26433206.
dc.identifier.citedreferenceBuder, B., Alexander, M., Krishnan, R., Chapman, D. W., & Lakey, J. R. ( 2013 ). Encapsulated islet transplantation: Strategies and clinical trials. Immune Network, 13, 235 – 239. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3875781&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceBuitinga, M., Truckenmüller, R., Engelse, M. A, Moroni, L., Ten Hoopen, H. W. M., van Blitterswijk, C. A, … Karperien, M. ( 2013 ). Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans. PLoS One, 8, e64772. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3667808&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceDeForest, C. A, & Anseth, K. S. ( 2012 ). Advances in bioactive hydrogels to probe and direct cell fate. Annual Review of Chemical and Biomolecular Engineering, 3, 421 – 444. http://www.ncbi.nlm.nih.gov/pubmed/22524507.
dc.identifier.citedreferenceDesai, T., & Shea, L. D. ( 2016 ). Advances in islet encapsulation technologies. Nature Reviews. Drug Discovery, 16, 338 – 350. https://doi.org/http://dx.org/10.1038/nrd.2016.232.
dc.identifier.citedreferenceFoster, G. A., & García, A. J. ( 2017 ). Bio‐synthetic materials for immunomodulation of islet transplants. Advanced Drug Delivery Reviews, 114, 266 – 271. https://www.sciencedirect.com/science/article/pii/S0169409X17300686?via%3Dihub.
dc.identifier.citedreferenceGibly, R. F., Graham, J. G., Luo, X., Lowe, W. L., Hering, B. J., & Shea, L. D. ( 2011 ). Advancing islet transplantation: From engraftment to the immune response. Diabetologia, 54, 2494 – 2505. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3193607&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceGibly, R. F., Zhang, X., Graham, M. L., Hering, B. J., Kaufman, D. B., Lowe, W. L., & Shea, L. D. ( 2011 ). Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials, 32, 9677 – 9684. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3195897&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceGraham, J. G., Zhang, X., Goodman, A., Pothoven, K., Houlihan, J., Wang, S., … Shea, L. D. ( 2013 ). PLG scaffold delivered antigen‐specific regulatory T cells induce systemic tolerance in autoimmune diabetes. Tissue Engineering. Part A, 19, 1465 – 1475. http://online.liebertpub.com/doi/abs/10.1089/ten.TEA.2012.0643?url_ver=Z39.88‐2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed&.
dc.identifier.citedreferenceHering, B. J., Clarke, W. R., Bridges, N. D., Eggerman, T. L., Alejandro, R., Bellin, M. D., … Turgeon, N. A. ( 2016 ). Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care, 39, 1230 – 1240. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5317236/.
dc.identifier.citedreferenceHlavaty, K. A., Gibly, R. F., Zhang, X., Rives, C. B., Graham, J. G., Lowe, W. L., … Shea, L. D. ( 2014 ). Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 14, 1523 – 1532. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4232190&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceJhunjhunwala, S., Aresta‐DaSilva, S., Tang, K., Alvarez, D., Webber, M. J., Tang, B. C., … Anderson, D. G. ( 2015 ). Neutrophil responses to sterile implant materials. PLoS One, 10, e0137550. N. Palaniyar (Ed.). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565661/.
dc.identifier.citedreferenceJiang, W. ‐W., Su, S. ‐H., Eberhart, R. C., & Tang, L. ( 2007 ). Phagocyte responses to degradable polymers. Journal of Biomedical Materials Research, Part A, 82A, 492 – 497. https://doi.org/http://dx.org/10.1002/jbm.a.31175.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.