Show simple item record

Plasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women

dc.contributor.authorRyan, Benjamin J.
dc.contributor.authorPelt, Douglas W.
dc.contributor.authorGuth, Lisa M.
dc.contributor.authorLudzki, Alison C.
dc.contributor.authorGioscia‐ryan, Rachel A.
dc.contributor.authorAhn, Chiwoon
dc.contributor.authorFoug, Katherine L.
dc.contributor.authorHorowitz, Jeffrey F.
dc.date.accessioned2018-11-20T15:36:01Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationRyan, Benjamin J.; Pelt, Douglas W.; Guth, Lisa M.; Ludzki, Alison C.; Gioscia‐ryan, Rachel A. ; Ahn, Chiwoon; Foug, Katherine L.; Horowitz, Jeffrey F. (2018). "Plasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women." Experimental Physiology 103(11): 1443-1447.
dc.identifier.issn0958-0670
dc.identifier.issn1469-445X
dc.identifier.urihttps://hdl.handle.net/2027.42/146491
dc.description.abstractHigh rates of fatty acid (FA) mobilization from adipose tissue are associated with insulin resistance (IR) in obesity. In vitro evidence suggests that iron stimulates lipolysis in adipocytes, but whether iron is related to in vivo FA mobilization is unknown. We hypothesized that plasma ferritin concentration ([ferritin]), a marker of body iron stores, would be positively associated with FA mobilization. We measured [ferritin], the rate of appearance of FA in the systemic circulation (FA Ra; stable isotope dilution), key adipose tissue lipolytic proteins and IR (hyperinsulinaemicâ euglycaemic clamp) in 20 obese, premenopausal women. [Ferritin] was correlated with FA Ra (r = 0.65; P = 0.002) and IR (r = 0.57; P = 0.008); these relationships remained significant after controlling for body mass index and plasma [Câ reactive protein] (a marker of systemic inflammation) in multiple regression analyses. We then stratified subjects into tertiles based on [ferritin] to compare subjects with â Highâ ferritinâ versus â Lowâ ferritinâ . Plasma [hepcidin] was more than fivefold greater (P < 0.05) in the Highâ ferritin versus Lowâ ferritin group, but there was no difference in plasma [Câ reactive protein] between groups, indicating that the large difference in plasma [ferritin] reflects a difference in iron stores, not systemic inflammation. We found that FA Ra, adipose protein abundance of hormoneâ sensitive lipase and adipose triglyceride lipase, and IR were significantly greater in subjects with Highâ ferritin versus Lowâ ferritin (all P < 0.05). These data provide the first evidence linking iron and in vivo FA mobilization and suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability.
dc.publisherWorld Health Organization
dc.publisherWiley Periodicals, Inc.
dc.subject.otheriron
dc.subject.otherlipolysis
dc.subject.otherobesity
dc.titlePlasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146491/1/eph12367_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146491/2/eph12367.pdf
dc.identifier.doi10.1113/EP087283
dc.identifier.sourceExperimental Physiology
dc.identifier.citedreferenceSchreiber, R., Diwoky, C., Schoiswohl, G., Feiler, U., Wongsiriroj, N., Abdellatif, M., â ¦ Zechner, R. ( 2017 ). Coldâ induced theromogenesis depends on ATGLâ mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metabolism, 26, 753 â 763. https://doi.org/10.1016/j.cmet.2017.09.004
dc.identifier.citedreferenceChirumbolo, S., Rossi, A. P., Rizzatti, V., Zoico, E., Franceschetti, G., Girelli, D., & Zamboni, M. ( 2015 ). Iron primes 3T3â L1 adipocytes to a TLR4â mediated inflammatory response. Nutrition, 31, 1266 â 1274. https://doi.org/10.1016/j.nut.2015.04.007
dc.identifier.citedreferenceCoffee, R., & Ganz, T. ( 2017 ). Iron homeostasis: An anthropocentric perspective. The Journal of Biological Chemistry, 292, 12727 â 12734. https:doi.org/10.1074/jbc.R117.781823
dc.identifier.citedreferenceFernándezâ Real, J. M., McClain, D., & Manco, M. ( 2015 ). Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care, 38, 2169 â 2176. https://doi.org/10.2337/dc14-3082
dc.identifier.citedreferenceGabay, C., & Kushner, I. ( 1999 ). Acuteâ phase proteins and other systemic responses to inflammation. New England Journal of Medicine, 340, 448 â 454. https://doi.org/10.1056/NEJM199902113400607
dc.identifier.citedreferenceGabrielsen, J. S., Gao, Y., Simcox, J. A., Huang, J., Thorup, D., Jones, D., â ¦ McClain, D. A. ( 2012 ). Adipocyte iron regulates adiponectin and insulin sensitivity. Journal of Clinical Investigation, 122, 3529 â 3540. https://doi.org/10.1172/JCI44421
dc.identifier.citedreferenceJehn, M., Clark, J. M., & Guallar, E. ( 2004 ). Serum ferritin and risk of metabolic syndrome in U.S. adults. Diabetes Care, 27, 2422 â 2428. https://doi.org/10.2337/diacare.27.10.2422
dc.identifier.citedreferenceKatsumura, M., Takagi, S., Oya, H., Tamura, S., Saneyasu, T., Honda, K., & Kamisoyama, H. ( 2017 ). Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in highâ fat dietâ fed mice. Animal Science Journal, 88, 1100 â 1106. https://doi.org/10.1111/asj.12734
dc.identifier.citedreferenceKrawczyk, S. A., Haller, J. F., Ferrante, T., Zoeller, R. A., & Corkey, B. E. ( 2012 ). Reactive oxygen species facilitate translocation of hormone sensitive lipase to the lipid droplet during lipolysis in human differentiated adipocytes. PLoS ONE, 7, e34904. https://doi.org/10.1371/journal.pone.0034904
dc.identifier.citedreferenceMorenoâ Navarrete, J. M., Novelle, M. G., Catalán, V., Ortega, F., Moreno, M., Gomezâ Ambrosi, J., â ¦ Fernándezâ Real, J. M. ( 2014 ). Insulin resistance modulates ironâ related proteins in adipose tissue. Diabetes Care, 37, 1092 â 1100. https://doi.org/10.2337/dc13-1602
dc.identifier.citedreferenceOrr, J. S., Kennedy, A., Andersonâ Baucum, E. K., Webb, C. D., Fordahl, S. C., Erikson, K. M., â ¦ Hasty, A. H. ( 2014 ). Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes, 63, 421 â 432. https://doi.org/10.2337/db13-0213
dc.identifier.citedreferencePatterson, B. W., Zhao, G., Elias, N., Hachey, D. L., & Klein, S. ( 1999 ). Validation of a new procedure to determine plasma fatty acid concentration and isotopic enrichment. The Journal of Lipid Research, 40, 2118 â 2124.
dc.identifier.citedreferencePatterson, B. W., Zhao, G., & Klein, S. ( 1998 ). Improved accuracy and precision of gas chromatography/mass spectrometry measurements for metabolic tracers. Metabolism, 47, 706 â 712. https://doi.org/10.1016/S0026-0495(98)90035-X
dc.identifier.citedreferenceRumberger, J. M., Peters, T., Burrington, C., & Green, A. ( 2004 ). Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes. Diabetes, 53, 2535 â 2541. https://doi.org/10.2337/diabetes.53.10.2535
dc.identifier.citedreferenceSteele, R. ( 1959 ). Influences of glucose loading and of injected insulin on hepatic glucose output. Annals of the New York Academy of Sciences, 82, 420 â 430.
dc.identifier.citedreferenceVan Pelt, D. W., Guth, L. M., Wang, A. Y., & Horowitz, J. F. ( 2017 ). Factors regulating subcutaneous adipose tissue storage, fibrosis, and inflammation may underlie low fatty acid mobilization in insulinâ sensitive obese adults. American Journal of Physiology. Endocrinology and Metabolism, 313, E429 â E439. https://doi.org/10.1152/ajpendo.00084.2017
dc.identifier.citedreferenceWang, H., Sreenivasan, U., Gong, Dâ W., O’Connell, K. A., Dabkowski, E. R., Hecker, P. A., â ¦ Sztalryd, C. ( 2013 ). Cardiomyocyteâ specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. The Journal of Lipid Research, 54, 953 â 965. https://doi.org/10.1194/jlr.M032466
dc.identifier.citedreferenceWlazlo, N., van Greevenbroek, M. M. J., Ferreira, I., Jansen, E. H. J.M., Feskens, E. J. M., van der Kallen, C. J. H., â ¦ Stehouwer, C. D. A. ( 2013 ). Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin. Diabetes Care, 36, 309 â 315. https://doi.org/10.2337/dc12-0505
dc.identifier.citedreferenceWlazlo, N., van Greevenbroek, M. M. J., Ferreira, I., Jansen, E. H. J.M., Feskens, E. J. M., van der Kallen, C. J. H., â ¦ Stehouwer, C. D. A. ( 2015 ). Iron metabolism is prospectively associated with insulin resistance and glucose intolerance over a 7â year followâ up period: The CODAM study. Acta Diabetologica, 52, 337 â 348. https://doi.org/10.1007/s00592-014-0646-3
dc.identifier.citedreferenceWorwood, M. ( 2007 ). Indicators of the iron status of populations: Ferritin. In Assessing the iron status of populations: including literature reviews ( 2nd ed., pp. 31 â 73 ). Geneva: World Health Organization.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.