Show simple item record

Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training

dc.contributor.authorAhtiainen, Juha P.
dc.contributor.authorLensu, Sanna
dc.contributor.authorRuotsalainen, Ilona
dc.contributor.authorSchumann, Moritz
dc.contributor.authorIhalainen, Johanna K.
dc.contributor.authorFachada, Vasco
dc.contributor.authorMendias, Christopher L.
dc.contributor.authorBrook, Matthew S.
dc.contributor.authorSmith, Kenneth
dc.contributor.authorAtherton, Philip J.
dc.contributor.authorKoch, Lauren G.
dc.contributor.authorBritton, Steven L.
dc.contributor.authorKainulainen, Heikki
dc.date.accessioned2018-11-20T15:36:07Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationAhtiainen, Juha P.; Lensu, Sanna; Ruotsalainen, Ilona; Schumann, Moritz; Ihalainen, Johanna K.; Fachada, Vasco; Mendias, Christopher L.; Brook, Matthew S.; Smith, Kenneth; Atherton, Philip J.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki (2018). "Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training." Experimental Physiology 103(11): 1513-1523.
dc.identifier.issn0958-0670
dc.identifier.issn1469-445X
dc.identifier.urihttps://hdl.handle.net/2027.42/146496
dc.description.abstractThe purpose of this study was to determine whether rats selectively bred for low and high response to aerobic exercise training co‐segregate for differences in muscle adaptations to ladder‐climbing resistance training. Five high‐responder (HRT) and five low‐responder (LRT) rats completed the resistance training, while six HRT and six LRT rats served as sedentary control animals. Before and after the 6 week intervention, body composition was determined by dual energy X‐ray absorptiometry. Before tissue harvesting, the right triceps surae muscles were loaded by electrical stimulation. Muscle fibre cross‐sectional areas, nuclei per cell, phosphorylation status of selected signalling proteins of mTOR and Smad pathways, and muscle protein, DNA and RNA concentrations were determined for the right gastrocnemius muscle. The daily protein synthesis rate was determined by the deuterium oxide method from the left quadriceps femoris muscle. Tissue weights of fore‐ and hindlimb muscles were measured. In response to resistance training, maximal carrying capacity was greater in HRT (∼3.3 times body mass) than LRT (∼2.5 times body mass), indicating greater improvements of strength in HRT. However, muscle hypertrophy that could be related to greater strength gains in HRT was not observed. Furthermore, noteworthy changes within the experimental groups or differences between groups were not observed in the present measures. The lack of hypertrophic muscular adaptations despite considerable increases in muscular strength suggest that adaptations to the present ladder‐climbing training in HRT and LRT rats were largely induced by neural adaptations.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermuscle stimulation
dc.subject.otherprotein synthesis
dc.subject.othermuscle hypertrophy
dc.subject.otherfibre contractility
dc.titlePhysiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146496/1/eph12369.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146496/2/eph12369_am.pdf
dc.identifier.doi10.1113/EP087144
dc.identifier.sourceExperimental Physiology
dc.identifier.citedreferenceMobley, C. B., Haun, C. T., Roberson, P. A., Mumford, P. W., Kephart, W. C., Romero, M. A., … Roberts, M. D. ( 2018 ). Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training. PLoS One, 13, e0195203.
dc.identifier.citedreferenceDuncan, N. D., Williams, D. A., & Lynch, G. S. ( 1998 ). Adaptations in rat skeletal muscle following long‐term resistance exercise training. European Journal of Applied Physiology and Occupational Physiology, 77, 372 – 378. https://doi.org/10.1007/s004210050347
dc.identifier.citedreferenceGil, J. H., & Kim, C. K. ( 2015 ). Effects of different doses of leucine ingestion following eight weeks of resistance exercise on protein synthesis and hypertrophy of skeletal muscle in rats. Journal of Exercise Nutrition & Biochemistry, 19, 31 – 38. https://doi.org/10.5717/jenb.2015.19.1.31
dc.identifier.citedreferenceHarris, M. B., Slack, K. N., Prestosa, D. T., & Hryvniak, D. J. ( 2010 ). Resistance training improves femoral artery endothelial dysfunction in aged rats. European Journal of Applied Physiology, 108, 533 – 540. https://doi.org/10.1007/s00421-009-1250-z
dc.identifier.citedreferenceHornberger, T. A., Jr., & Farrar, R. P. ( 2004 ). Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee, 29, 16 – 31.
dc.identifier.citedreferenceHubal, M. J., Gordish‐Dressman, H., Thompson, P. D., Price, T. B., Hoffman, E. P., Angelopoulos, T. J., … Clarkson, P. M. ( 2005 ). Variability in muscle size and strength gain after unilateral resistance training. Medicine and Science in Sports and Exercise, 37, 964 – 972. https://doi.org/00005768‐200506000‐00010 [pii]
dc.identifier.citedreferenceJung, S., Ahn, N., Kim, S., Byun, J., Joo, Y., Kim, S., … Kim, K. ( 2015 ). The effect of ladder‐climbing exercise on atrophy/hypertrophy‐related myokine expression in middle‐aged male Wistar rats. The Journal of Physiological Sciences, 65, 515 – 521. https://doi.org/10.1007/s12576-015-0388-1
dc.identifier.citedreferenceKim, J., Park, Y., Lee, S., Masad, I. S., Khamoui, A. V., Jo, E., … Grant, S. C. ( 2012 ). β‐Hydroxy‐β‐methylbutyrate did not enhance high intensity resistance training‐induced improvements in myofiber dimensions and myogenic capacity in aged female rats. Molecules and Cells, 34, 439 – 448. https://doi.org/10.1007/s10059-012-0196-x
dc.identifier.citedreferenceKoch, L. G., Pollott, G. E., & Britton, S. L. ( 2013 ). Selectively bred rat model system for low and high response to exercise training. Physiological Genomics, 45, 606 – 614. https://doi.org/10.1152/physiolgenomics.00021.2013
dc.identifier.citedreferenceLee, S., Barton, E. R., Sweeney, H. L., & Farrar, R. P. ( 2004 ). Viral expression of insulin‐like growth factor‐I enhances muscle hypertrophy in resistance‐trained rats. Journal of Applied Physiology, 96, 1097 – 1104. https://doi.org/10.1152/japplphysiol.00479.2003
dc.identifier.citedreferenceLee, S., Hong, K., & Kim, K. ( 2016 ). Effect of previous strength training episode and retraining on facilitation of skeletal muscle hypertrophy and contractile properties after long‐term detraining in rats. Journal of Exercise Rehabilitation, 12, 79 – 82. https:/doi.org/10.12965/jer.1632608.304
dc.identifier.citedreferenceLowe, D. A., & Alway, S. E. ( 2002 ). Animal models for inducing muscle hypertrophy: Are they relevant for clinical applications in humans ? The Journal of Orthopaedic and Sports Physical Therapy, 32, 36 – 43. https://doi.org/10.2519/jospt.2002.32.2.36
dc.identifier.citedreferenceLuciano, T. F., Marques, S. O., Pieri, B. L., de Souza, D. R., Araújo, L. V., Nesi, R. T., … de Souza, C. T. ( 2017 ). Responses of skeletal muscle hypertrophy in Wistar rats to different resistance exercise models. Physiological Research, 66, 317 – 323.
dc.identifier.citedreferenceMayhew, D. L., Hornberger, T. A., Lincoln, H. C., & Bamman, M. M. ( 2011 ). Eukaryotic initiation factor 2B epsilon induces cap‐dependent translation and skeletal muscle hypertrophy. The Journal of Physiology, 589, 3023 – 3037. https://doi.org/10.1113/jphysiol.2010.202432
dc.identifier.citedreferenceMendias, C. L., Kayupov, E., Bradley, J. R., Brooks, S. V., & Claflin, D. R. ( 2011 ). Decreased specific force and power production of muscle fibers from myostatin‐deficient mice are associated with a suppression of protein degradation. Journal of Applied Physiology, 111, 185 – 191. https://doi.org/10.1152/japplphysiol.00126.2011
dc.identifier.citedreferenceMendias, C. L., Lynch, E. B., Gumucio, J. P., Flood, M. D., Rittman, D. S., Van Pelt, D. W., … Davis, C. S. ( 2015 ). Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. The Journal of Physiology, 593, 2037 – 2052. https://doi.org/10.1113/jphysiol.2014.287144
dc.identifier.citedreferenceMitchell, C. J., Churchward‐Venne, T. A., Bellamy, L., Parise, G., Baker, S. K., & Phillips, S. M. ( 2013 ). Muscular and systemic correlates of resistance training‐induced muscle hypertrophy. PLoS One, 8, e78636.
dc.identifier.citedreferenceMolanouri Shamsi, M., Mahdavi, M., Quinn, L. S., Gharakhanlou, R., & Isanegad, A. ( 2016 ). Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ‐induced diabetic rats. Cell Stress & Chaperones, 21, 783 – 791. https://doi.org/10.1007/s12192-016-0703-7
dc.identifier.citedreferenceNeves, R. V. P., Souza, M. K., Passos, C. S., Bacurau, R. F. P., Simoes, H. G., Prestes, J., … Moraes, M. R. ( 2016 ). Resistance training in spontaneously hypertensive rats with severe hypertension. Arquivos Brasileiros De Cardiologia, 106, 201 – 209. https://doi.org/10.5935/abc.20160019
dc.identifier.citedreferenceNokia, M. S., Lensu, S., Ahtiainen, J. P., Johansson, P. P., Koch, L. G., Britton, S. L., & Kainulainen, H. ( 2016 ). Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained. The Journal of Physiology, 594, 1855 – 1873. https://doi.org/10.1113/JP271552
dc.identifier.citedreferenceOgasawara, R., Akimoto, T., Umeno, T., Sawada, S., Hamaoka, T., & Fujita, S. ( 2016 ). MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiological Genomics, 48, 320 – 324. https://doi.org/10.1152/physiolgenomics.00124.2015
dc.identifier.citedreferencePeixinho‐Pena, L. F., Fernandes, J., de Almeida, A. A., Novaes Gomes, F. G., Cassilhas, R., Venancio, D. P., … Arida, R. M. ( 2012 ). A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy & Behavior, 25, 323 – 328. https://doi.org/10.1016/j.yebeh.2012.08.011
dc.identifier.citedreferencePetrella, J. K., Kim, J., Mayhew, D. L., Cross, J. M., & Bamman, M. M. ( 2008 ). Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell‐mediated myonuclear addition: A cluster analysis. Journal of Applied Physiology, 104, 1736 – 1742.
dc.identifier.citedreferencePrestes, J., Leite, R. D., Pereira, G. B., Shiguemoto, G. E., Bernardes, C. F., Asano, R. Y., … Perez, S. E. ( 2012 ). Resistance training and glycogen content in ovariectomized rats. International Journal of Sports Medicine, 33, 550 – 554. https://doi.org/10.1055/s-0032-1304646
dc.identifier.citedreferenceSafarzade, A., & Talebi‐Garakani, E. ( 2014 ). Short term resistance training enhanced plasma apoA‐I and FABP4 levels in streptozotocin‐induced diabetic rats. Journal of Diabetes and Metabolic Disorders, 13, 41. https://doi.org/10.1186/2251-6581-13-41
dc.identifier.citedreferenceSouza, M. V., Leite, R. D., Souza Lino, A. D., Marqueti, R. de C., Bernardes, C. F., Araujo, H. S., … Kraemer‐Aguiar, L. G. ( 2014 ). Resistance training improves body composition and increases matrix metalloproteinase 2 activity in biceps and gastrocnemius muscles of diet‐induced obese rats. Clinics (Sao Paulo, Brazil), 69, 265 – 270. https://doi.org/S1807-59322014000400265 [pii]
dc.identifier.citedreferenceStec, M. J., Kelly, N. A., Many, G. M., Windham, S. T., Tuggle, S. C., & Bamman, M. M. ( 2016 ). Ribosome biogenesis may augment resistance training‐induced myofiber hypertrophy and is required for myotube growth in vitro. American Journal of Physiology. Endocrinology and Metabolism, 310, E652 – E661.
dc.identifier.citedreferenceSteele, J., Fisher, J., Skivington, M., Dunn, C., Arnold, J., Tew, G., … Winett, R. ( 2017 ). A higher effort‐based paradigm in physical activity and exercise for public health: Making the case for a greater emphasis on resistance training. BMC Public Health, 17, 8. https://doi.org/10.1186/s12889-017-4209-8
dc.identifier.citedreferenceStrickland, J. C., & Smith, M. A. ( 2016 ). Animal models of resistance exercise and their application to neuroscience research. Journal of Neuroscience Methods, 273, 191 – 200. https://doi.org/S0165-0270(16)30182-0 [pii]
dc.identifier.citedreferenceThalacker‐Mercer, A., Stec, M., Cui, X., Cross, J., Windham, S., & Bamman, M. ( 2013 ). Cluster analysis reveals differential transcript profiles associated with resistance training‐induced human skeletal muscle hypertrophy. Physiological Genomics, 45, 499 – 507.
dc.identifier.citedreferenceTorvinen, S., Silvennoinen, M., Piitulainen, H., Närväinen, J., Tuunanen, P., Gröhn, O., … Kainulainen, H. ( 2012 ). Rats bred for low aerobic capacity become promptly fatigued and have slow metabolic recovery after stimulated, maximal muscle contractions. PLoS One, 7, e48345. https://doi.org/10.1371/journal.pone.0048345
dc.identifier.citedreferenceAhtiainen, J. P., Walker, S., Peltonen, H., Holviala, J., Sillanpää, E., Karavirta, L., … Häkkinen, K. ( 2016 ). Heterogeneity in resistance training‐induced muscle strength and mass responses in men and women of different ages. Age (Dordrecht, Netherlands), 38, 10. https://doi.org/10.1007/s11357-015-9870-1
dc.identifier.citedreferenceBalshaw, T. G., Massey, G. J., Maden‐Wilkinson, T. M., Morales‐Artacho, A. J., McKeown, A., Appleby, C. L., & Folland, J. P. ( 2017 ). Changes in agonist neural drive, hypertrophy and pre‐training strength all contribute to the individual strength gains after resistance training. European Journal of Applied Physiology, 117, 631 – 640.
dc.identifier.citedreferenceBamman, M. M., Petrella, J. K., Kim, J., Mayhew, D. L., & Cross, J. M. ( 2007 ). Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. Journal of Applied Physiology, 102, 2232 – 2239.
dc.identifier.citedreferenceBegue, G., Douillard, A., Galbes, O., Rossano, B., Vernus, B., Candau, R., & Py, G. ( 2013 ). Early activation of rat skeletal muscle IL‐6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One, 8, e57141. https://doi.org/10.1371/journal.pone.0057141
dc.identifier.citedreferenceBouchard, C., & Rankinen, T. ( 2001 ). Individual differences in response to regular physical activity. Medicine and Science in Sports and Exercise, 33, S446 – S451; discussion S452–S453.
dc.identifier.citedreferenceBrook, M. S., Wilkinson, D. J., Atherton, P. J., & Smith, K. ( 2017 ). Recent developments in deuterium oxide tracer approaches to measure rates of substrate turnover: Implications for protein, lipid, and nucleic acid research. Current Opinion in Clinical Nutrition and Metabolic Care, 20, 375 – 381. https://doi.org/10.1097/MCO.0000000000000392
dc.identifier.citedreferenceCassilhas, R. C., Lee, K. S., Venancio, D. P., Oliveira, M. G., Tufik, S., & de Mello, M. T. ( 2012 ). Resistance exercise improves hippocampus‐dependent memory. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E Biologicas, 45, 1215 – 1220. Retrieved from https://doi.org/S0100-879X2012007500138 [pii]
dc.identifier.citedreferenceCholewa, J., Guimaraes‐Ferreira, L., da Silva Teixeira, T., Naimo, M. A., Zhi, X., de Sa, R. B., … Zanchi, N. E. ( 2014 ). Basic models modeling resistance training: An update for basic scientists interested in study skeletal muscle hypertrophy. Journal of Cellular Physiology, 229, 1148 – 1156. https://doi.org/10.1002/jcp.24542
dc.identifier.citedreferenceDavidsen, P. K., Gallagher, I. J., Hartman, J. W., Tarnopolsky, M. A., Dela, F., Helge, J. W., … Phillips, S. M. ( 2011 ). High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. Journal of Applied Physiology, 110, 309 – 317.
dc.identifier.citedreferencede Sousa Neto, I. V., Tibana, R. A., da Cunha Nascimento, D., Vieira, D. C. L., Durigan, J. L. Q., Pereira, G. B., … Prestes, J. ( 2017 ). Effects of resistance training volume on MMPs in circulation, muscle and adipose tissue. International Journal of Sports Medicine, 38, 307 – 313. https://doi.org/10.1055/s-0042-123192
dc.identifier.citedreferenceDeschenes, M. R., Judelson, D. A., Kraemer, W. J., Meskaitis, V. J., Volek, J. S., Nindl, B. C., … Deaver, D. R. ( 2000 ). Effects of resistance training on neuromuscular junction morphology. Muscle & Nerve, 23, 1576 – 1581. https://doi.org/AID-MUS15>3.0.CO;2-J [pii]
dc.identifier.citedreferenceDeschenes, M. R., Sherman, E. G., Roby, M. A., Glass, E. K., & Harris, M. B. ( 2015 ). Effect of resistance training on neuromuscular junctions of young and aged muscles featuring different recruitment patterns. Journal of Neuroscience Research, 93, 504 – 513. https://doi.org/10.1002/jnr.23495
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.