Development and evaluation of a multimodal marker of major depressive disorder
dc.contributor.author | Yang, Jie | |
dc.contributor.author | Zhang, Mengru | |
dc.contributor.author | Ahn, Hongshik | |
dc.contributor.author | Zhang, Qing | |
dc.contributor.author | Jin, Tony B. | |
dc.contributor.author | Li, Ien | |
dc.contributor.author | Nemesure, Matthew | |
dc.contributor.author | Joshi, Nandita | |
dc.contributor.author | Jiang, Haoran | |
dc.contributor.author | Miller, Jeffrey M. | |
dc.contributor.author | Ogden, Robert Todd | |
dc.contributor.author | Petkova, Eva | |
dc.contributor.author | Milak, Matthew S. | |
dc.contributor.author | Sublette, Mary Elizabeth | |
dc.contributor.author | Sullivan, Gregory M. | |
dc.contributor.author | Trivedi, Madhukar H. | |
dc.contributor.author | Weissman, Myrna | |
dc.contributor.author | McGrath, Patrick J. | |
dc.contributor.author | Fava, Maurizio | |
dc.contributor.author | Kurian, Benji T. | |
dc.contributor.author | Pizzagalli, Diego A. | |
dc.contributor.author | Cooper, Crystal M. | |
dc.contributor.author | McInnis, Melvin | |
dc.contributor.author | Oquendo, Maria A. | |
dc.contributor.author | Mann, Joseph John | |
dc.contributor.author | Parsey, Ramin V. | |
dc.contributor.author | DeLorenzo, Christine | |
dc.date.accessioned | 2018-11-20T15:36:17Z | |
dc.date.available | 2020-01-06T16:40:59Z | en |
dc.date.issued | 2018-11 | |
dc.identifier.citation | Yang, Jie; Zhang, Mengru; Ahn, Hongshik; Zhang, Qing; Jin, Tony B.; Li, Ien; Nemesure, Matthew; Joshi, Nandita; Jiang, Haoran; Miller, Jeffrey M.; Ogden, Robert Todd; Petkova, Eva; Milak, Matthew S.; Sublette, Mary Elizabeth; Sullivan, Gregory M.; Trivedi, Madhukar H.; Weissman, Myrna; McGrath, Patrick J.; Fava, Maurizio; Kurian, Benji T.; Pizzagalli, Diego A.; Cooper, Crystal M.; McInnis, Melvin; Oquendo, Maria A.; Mann, Joseph John; Parsey, Ramin V.; DeLorenzo, Christine (2018). "Development and evaluation of a multimodal marker of major depressive disorder." Human Brain Mapping 39(11): 4420-4439. | |
dc.identifier.issn | 1065-9471 | |
dc.identifier.issn | 1097-0193 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/146504 | |
dc.description.abstract | This study aimed to identify biomarkers of major depressive disorder (MDD), by relating neuroimage‐derived measures to binary (MDD/control), ordinal (severe MDD/mild MDD/control), or continuous (depression severity) outcomes. To address MDD heterogeneity, factors (severity of psychic depression, motivation, anxiety, psychosis, and sleep disturbance) were also used as outcomes. A multisite, multimodal imaging (diffusion MRI [dMRI] and structural MRI [sMRI]) cohort (52 controls and 147 MDD patients) and several modeling techniques—penalized logistic regression, random forest, and support vector machine (SVM)—were used. An additional cohort (25 controls and 83 MDD patients) was used for validation. The optimally performing classifier (SVM) had a 26.0% misclassification rate (binary), 52.2 ± 1.69% accuracy (ordinal) and r = .36 correlation coefficient (p < .001, continuous). Using SVM, R2 values for prediction of any MDD factors were <10%. Binary classification in the external data set resulted in 87.95% sensitivity and 32.00% specificity. Though observed classification rates are too low for clinical utility, four image‐based features contributed to accuracy across all models and analyses—two dMRI‐based measures (average fractional anisotropy in the right cuneus and left insula) and two sMRI‐based measures (asymmetry in the volume of the pars triangularis and the cerebellum) and may serve as a priori regions for future analyses. The poor accuracy of classification and predictive results found here reflects current equivocal findings and sheds light on challenges of using these modalities for MDD biomarker identification. Further, this study suggests a paradigm (e.g., multiple classifier evaluation with external validation) for future studies to avoid nongeneralizable results. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | major depressive disorder | |
dc.subject.other | structural MRI | |
dc.subject.other | support vector machine | |
dc.subject.other | diffusion MRI | |
dc.subject.other | magnetic resonance imaging | |
dc.title | Development and evaluation of a multimodal marker of major depressive disorder | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurosciences | |
dc.subject.hlbsecondlevel | Kinesiology and Sports | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/146504/1/hbm24282_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/146504/2/hbm24282.pdf | |
dc.identifier.doi | 10.1002/hbm.24282 | |
dc.identifier.source | Human Brain Mapping | |
dc.identifier.citedreference | Phillips, M. L. ( 2012 ). Neuroimaging in psychiatry: Bringing neuroscience into clinical practice. The British Journal of Psychiatry, 201 ( 1 ), 1 – 3. https://doi.org/10.1192/bjp.bp.112.109587 | |
dc.identifier.citedreference | Peng, H. J., Zheng, H. R., Ning, Y. P., Zhang, Y., Shan, B. C., Zhang, L., … Li, L. J. ( 2013 ). Abnormalities of cortical‐limbic‐cerebellar white matter networks may contribute to treatment‐resistant depression: A diffusion tensor imaging study. BMC Psychiatry, 13, 72. https://doi.org/10.1186/1471-244x-13-72 | |
dc.identifier.citedreference | Perlman, G., Bartlett, E., DeLorenzo, C., Weissman, M., McGrath, P., Ogden, T., … Parsey, R. ( 2017 ). Cortical thickness is not associated with current depression in a clinical treatment study. Human Brain Mapping, 38 ( 9 ), 4370 – 4385. https://doi.org/10.1002/hbm.23664 | |
dc.identifier.citedreference | Peterson, B. S., Warner, V., Bansal, R., Zhu, H., Hao, X., Liu, J., … Weissman, M. M. ( 2009 ). Cortical thinning in persons at increased familial risk for major depression. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 15 ), 6273 – 6278. https://doi.org/10.1073/pnas.0805311106 | |
dc.identifier.citedreference | Peterson, B. S., & Weissman, M. M. ( 2011 ). A brain‐based endophenotype for major depressive disorder. Annual Review of Medicine, 62, 461 – 474. | |
dc.identifier.citedreference | Phillips, J. R., Hewedi, D. H., Eissa, A. M., & Moustafa, A. A. ( 2015 ). The cerebellum and psychiatric disorders. Frontiers in Public Health, 3, 66. https://doi.org/10.3389/fpubh.2015.00066 | |
dc.identifier.citedreference | Price, J. L., & Drevets, W. C. ( 2010 ). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35 ( 1 ), 192 – 216. https://doi.org/10.1038/npp.2009.104 | |
dc.identifier.citedreference | Qiu, L., Huang, X., Zhang, J., Wang, Y., Kuang, W., Li, J., … Gong, Q. ( 2014 ). Characterization of major depressive disorder using a multiparametric classification approach based on high resolution structural images. Journal of Psychiatry & Neuroscience, 39 ( 2 ), 78 – 86. | |
dc.identifier.citedreference | Qiu, L., Lui, S., Kuang, W., Huang, X., Li, J., Li, J., … Gong, Q. ( 2014 ). Regional increases of cortical thickness in untreated, first‐episode major depressive disorder. Translational Psychiatry, 4, e378. https://doi.org/10.1038/tp.2014.18 | |
dc.identifier.citedreference | R Core Team. ( 2015 ). A language and environment for statistical computing. Retrieved from https://www.R-project.org/. | |
dc.identifier.citedreference | Reynolds, S., Carrey, N., Jaworska, N., Langevin, L. M., Yang, X. R., & Macmaster, F. P. ( 2014 ). Cortical thickness in youth with major depressive disorder. BMC Psychiatry, 14, 83. https://doi.org/10.1186/1471-244X-14-83 | |
dc.identifier.citedreference | Rizk, M. M., Rubin‐Falcone, H., Keilp, J., Miller, J. M., Sublette, M. E., Burke, A., … Mann, J. J. ( 2017 ). White matter correlates of impaired attention control in major depressive disorder and healthy volunteers. Journal of Affective Disorders, 222, 103 – 111. https://doi.org/10.1016/j.jad.2017.06.066 | |
dc.identifier.citedreference | Rolls, E. T. ( 2004a ). Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 281 ( 1 ), 1212 – 1225. https://doi.org/10.1002/ar.a.20126 | |
dc.identifier.citedreference | Rolls, E. T. ( 2004b ). The functions of the orbitofrontal cortex. Brain and Cognition, 55 ( 1 ), 11 – 29. https://doi.org/10.1016/S0278-2626(03)00277-X | |
dc.identifier.citedreference | Schmaal, L., Hibar, D. P., Samann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Veltman, D. J. ( 2016 ). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22, 900 – 909. https://doi.org/10.1038/mp.2016.60 | |
dc.identifier.citedreference | Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. ( 2004 ). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22 ( 3 ), 1060 – 1075. https://doi.org/10.1016/j.neuroimage.2004.03.032 | |
dc.identifier.citedreference | Segonne, F., Pacheco, J., & Fischl, B. ( 2007 ). Geometrically accurate topology‐correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26 ( 4 ), 518 – 529. https://doi.org/10.1109/TMI.2006.887364 | |
dc.identifier.citedreference | Serpa, M., Ou, Y., Schaufelberger, M., Doshi, J., Menezes, P., Scazufca, M., … Zanetti, M. ( 2014 ). Neuroanatomical classification in a population‐based sample of psychotic major depression and bipolar I disorder with 1 year of diagnostic stability. BioMed Research International, 2014, 706157. | |
dc.identifier.citedreference | Sexton, C. E., Allan, C. L., Le Masurier, M., McDermott, L. M., Kalu, U. G., Herrmann, L. L., … Ebmeier, K. P. ( 2012 ). Magnetic resonance imaging in late‐life depression: Multimodal examination of network disruption. Archives of General Psychiatry, 69 ( 7 ), 680 – 689. https://doi.org/10.1001/archgenpsychiatry.2011.1862 | |
dc.identifier.citedreference | Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. ( 2009 ). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry, 66 ( 9 ), 814 – 823. https://doi.org/10.1016/j.biopsych.2009.05.024 | |
dc.identifier.citedreference | Shah, R. D., & Samworth, R. J. ( 2013 ). Variable selection with error control: Another look at stability selection. Journal of Royal Statistical Society, 75 ( 1 ), 55 – 80. | |
dc.identifier.citedreference | Shakiba, A. ( 2014 ). The role of the cerebellum in neurobiology of psychiatric disorders. Neurologic Clinics, 32 ( 4 ), 1105 – 1115. https://doi.org/10.1016/j.ncl.2014.07.008 | |
dc.identifier.citedreference | Shao, J. ( 1993 ). Linear model selection by cross‐validation. Journal of the American Statistical Association, 88 ( 422 ), 486 – 494. | |
dc.identifier.citedreference | Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., … Raichle, M. E. ( 2009 ). The default mode network and self‐referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 6 ), 1942 – 1947. https://doi.org/10.1073/pnas.0812686106 | |
dc.identifier.citedreference | Shizukuishi, T., Abe, O., & Aoki, S. ( 2013 ). Diffusion tensor imaging analysis for psychiatric disorders. Magnetic Resonance in Medical Sciences, 12 ( 3 ), 153 – 159. | |
dc.identifier.citedreference | Singh, I., & Rose, N. ( 2009 ). Biomarkers in psychiatry. Nature, 460 ( 7252 ), 202 – 207. https://doi.org/10.1038/460202a | |
dc.identifier.citedreference | Sled, J. G., Zijdenbos, A. P., & Evans, A. C. ( 1998 ). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17 ( 1 ), 87 – 97. https://doi.org/10.1109/42.668698 | |
dc.identifier.citedreference | Sliz, D., & Hayley, S. ( 2012 ). Major depressive disorder and alterations in insular cortical activity: A review of current functional magnetic imaging research. Frontiers in Human Neuroscience, 6, 323. https://doi.org/10.3389/fnhum.2012.00323 | |
dc.identifier.citedreference | Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., … Kattan, M. W. ( 2010 ). Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology, 21 ( 1 ), 128 – 138. https://doi.org/10.1097/EDE.0b013e3181c30fb2 | |
dc.identifier.citedreference | Sui, J., Huster, R., Yu, Q., Segall, J. M., & Calhoun, V. D. ( 2013 ). Function‐structure associations of the brain: Evidence from multimodal connectivity and covariance studies. NeuroImage, 102, 11 – 23. https://doi.org/10.1016/j.neuroimage.2013.09.044 | |
dc.identifier.citedreference | Sun, Y., Wong, A. K. C., & Kamel, M. S. ( 2009 ). Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23 ( 4 ), 687 – 719. | |
dc.identifier.citedreference | Takahashi, T., Yucel, M., Lorenzetti, V., Walterfang, M., Kawasaki, Y., Whittle, S., … Allen, N. B. ( 2010 ). An MRI study of the superior temporal subregions in patients with current and past major depression. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 34 ( 1 ), 98 – 103. https://doi.org/10.1016/j.pnpbp.2009.10.005 | |
dc.identifier.citedreference | Takayanagi, Y., Spira, A. P., Roth, K. B., Gallo, J. J., Eaton, W. W., & Mojtabai, R. ( 2014 ). Accuracy of reports of lifetime mental and physical disorders: Results from the Baltimore Epidemiological Catchment Area study. JAMA Psychiatry, 71 ( 3 ), 273 – 280. https://doi.org/10.1001/jamapsychiatry.2013.3579 | |
dc.identifier.citedreference | Tibshirani, R. ( 1996 ). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B (Methodological), 58 ( 1 ), 267 – 288. | |
dc.identifier.citedreference | Treadway, M. T., Waskom, M. L., Dillon, D. G., Holmes, A. J., Park, M. T. M., Chakravarty, M. M., … Pizzagalli, D. A. ( 2015 ). Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biological Psychiatry, 77 ( 3 ), 285 – 294. https://doi.org/10.1016/j.biopsych.2014.06.018 | |
dc.identifier.citedreference | Trivedi, M. H., McGrath, P. J., Fava, M., Parsey, R. V., Kurian, B. T., Phillips, M. L., … Weissman, M. M. ( 2016 ). Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. Journal of Psychiatric Research, 78, 11 – 23. https://doi.org/10.1016/j.jpsychires.2016.03.001 | |
dc.identifier.citedreference | Tu, P. C., Chen, L. F., Hsieh, J. C., Bai, Y. M., Li, C. T., & Su, T. P. ( 2012 ). Regional cortical thinning in patients with major depressive disorder: A surface‐based morphometry study. Psychiatry Research, 202 ( 3 ), 206 – 213. https://doi.org/10.1016/j.pscychresns.2011.07.011 | |
dc.identifier.citedreference | Ugwu, I. D., Amico, F., Carballedo, A., Fagan, A. J., & Frodl, T. ( 2015 ). Childhood adversity, depression, age and gender effects on white matter microstructure: A DTI study. Brain Structure & Function, 220 ( 4 ), 1997 – 2009. https://doi.org/10.1007/s00429-014-0769-x | |
dc.identifier.citedreference | Utevsky, A. V., Smith, D. V., & Huettel, S. A. ( 2014 ). Precuneus is a functional core of the default‐mode network. The Journal of Neuroscience, 34 ( 3 ), 932 – 940. https://doi.org/10.1523/JNEUROSCI.4227-13.2014 | |
dc.identifier.citedreference | Van Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B., Pencina, M. J., & Steyerberg, E. W. ( 2016 ). A calibration hierarchy for risk models was defined: From utopia to empirical data. Journal of Clinical Epidemiology, 74, 167 – 176. https://doi.org/10.1016/j.jclinepi.2015.12.005 | |
dc.identifier.citedreference | van Tol, M. J., van der Wee, N. J., van den Heuvel, O. A., Nielen, M. M., Demenescu, L. R., Aleman, A., … Veltman, D. J. ( 2010 ). Regional brain volume in depression and anxiety disorders. Archives of General Psychiatry, 67 ( 10 ), 1002 – 1011. https://doi.org/10.1001/archgenpsychiatry.2010.121 | |
dc.identifier.citedreference | Wells, J. E., & Horwood, L. J. ( 2004 ). How accurate is recall of key symptoms of depression? A comparison of recall and longitudinal reports. Psychological Medicine, 34 ( 6 ), 1001 – 1011. | |
dc.identifier.citedreference | Whittle, S., Lichter, R., Dennison, M., Vijayakumar, N., Schwartz, O., Byrne, M. L., … Allen, N. B. ( 2014 ). Structural brain development and depression onset during adolescence: A prospective longitudinal study. The American Journal of Psychiatry, 171 ( 5 ), 564 – 571. https://doi.org/10.1176/appi.ajp.2013.13070920 | |
dc.identifier.citedreference | Wolpert, D. H., & Macready, W. G. ( 1997 ). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1 ( 1 ), 67 – 87. | |
dc.identifier.citedreference | World Health Organization. ( 2012 ). Depression. Fact sheet N 369. Retrieved from http://www.who.int/mediacentre/factsheets/fs369/en/ | |
dc.identifier.citedreference | Zhang, C.‐H. ( 2010 ). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38, 894 – 942. | |
dc.identifier.citedreference | Ziegler, A., Koch, A., Krockenberger, K., & Grosshennig, A. ( 2012 ). Personalized medicine using DNA biomarkers: A review. Human Genetics, 131 ( 10 ), 1627 – 1638. https://doi.org/10.1007/s00439-012-1188-9 | |
dc.identifier.citedreference | Abe, O., Yamasue, H., Kasai, K., Yamada, H., Aoki, S., Inoue, H., … Ohtomo, K. ( 2010 ). Voxel‐based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Research, 181 ( 1 ), 64 – 70. https://doi.org/10.1016/j.pscychresns.2009.07.007 | |
dc.identifier.citedreference | Aghajani, M., Veer, I. M., van Lang, N. D., Meens, P. H., van den Bulk, B. G., Rombouts, S. A., … van der Wee, N. J. ( 2014 ). Altered white‐matter architecture in treatment‐naive adolescents with clinical depression. Psychological Medicine, 44 ( 11 ), 2287 – 2298. https://doi.org/10.1017/S0033291713003000 | |
dc.identifier.citedreference | Aizenstein, H. J., Khalaf, A., Walker, S. E., & Andreescu, C. ( 2014 ). Magnetic resonance imaging predictors of treatment response in late‐life depression. Journal of Geriatric Psychiatry and Neurology, 27 ( 1 ), 24 – 32. https://doi.org/10.1177/0891988713516541 | |
dc.identifier.citedreference | Alexander, D. C., & Barker, G. J. ( 2005 ). Optimal imaging parameters for fiber‐orientation estimation in diffusion MRI. NeuroImage, 27 ( 2 ), 357 – 367. https://doi.org/10.1016/j.neuroimage.2005.04.008 | |
dc.identifier.citedreference | Amico, F., Meisenzahl, E., Koutsouleris, N., Reiser, M., Moller, H. J., & Frodl, T. ( 2011 ). Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry & Neuroscience, 36 ( 1 ), 15 – 22. https://doi.org/10.1503/jpn.090186 | |
dc.identifier.citedreference | Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. ( 2016 ). Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage, 145, 137 – 165. https://doi.org/10.1016/j.neuroimage.2016.02.079 | |
dc.identifier.citedreference | Ardila, A., Bernal, B., & Rosselli, M. ( 2015 ). Language and visual perception associations: Meta‐analytic connectivity modeling of Brodmann area 37. Behavioural Neurology, 2015 565871, 1 – 14. https://doi.org/10.1155/2015/565871 | |
dc.identifier.citedreference | Ardila, A., Bernal, B., & Rosselli, M. ( 2016 ). How localized are language brain areas? A review of Brodmann areas involvement in oral language. Archives of Clinical Neuropsychology, 31 ( 1 ), 112 – 122. https://doi.org/10.1093/arclin/acv081 | |
dc.identifier.citedreference | Austin, P. C., & Steyerberg, E. W. ( 2014 ). Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Statistics in Medicine, 33 ( 3 ), 517 – 535. https://doi.org/10.1002/sim.5941 | |
dc.identifier.citedreference | Baldacara, L., Borgio, J. G., Lacerda, A. L., & Jackowski, A. P. ( 2008 ). Cerebellum and psychiatric disorders. Revista Brasileira de Psiquiatria, 30 ( 3 ), 281 – 289. | |
dc.identifier.citedreference | Bijanki, K. R., Hodis, B., Brumm, M. C., Harlynn, E. L., & McCormick, L. M. ( 2014 ). Hippocampal and left subcallosal anterior cingulate atrophy in psychotic depression. PLoS One, 9 ( 10 ), e110770. https://doi.org/10.1371/journal.pone.0110770 | |
dc.identifier.citedreference | Breiman, L. ( 2001 ). Random forests. Machine Learning, 45 ( 1 ), 5 – 32. https://doi.org/10.1023/A:1010933404324 | |
dc.identifier.citedreference | Briceno, E. M., Weisenbach, S. L., Rapport, L. J., Hazlett, K. E., Bieliauskas, L. A., Haase, B. D., … Langenecker, S. A. ( 2013 ). Shifted inferior frontal laterality in women with major depressive disorder is related to emotion‐processing deficits. Psychological Medicine, 43 ( 7 ), 1433 – 1445. https://doi.org/10.1017/S0033291712002176 | |
dc.identifier.citedreference | Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. ( 2002 ). SMOTE: Synthetic minority over‐sampling technique. Journal of Artificial Intelligence Research, 16, 321 – 357. | |
dc.identifier.citedreference | Cherbuin, N., Reglade‐Meslin, C., Kumar, R., Sachdev, P., & Anstey, K. J. ( 2010 ). Mild cognitive disorders are associated with different patterns of brain asymmetry than normal aging: The PATH through life study. Frontiers in Psychiatry, 1, 11. https://doi.org/10.3389/fpsyt.2010.00011 | |
dc.identifier.citedreference | Choi, K., Craddock, R. C., Holtzheimer, P. E., Yang, Z., Hu, X., & Mayberg, H. ( 2008 ). A combined functional–structural connectivity analysis of major depression using joint independent components analysis. Psychiatric MRI/MRS, 16, 3 – 9. | |
dc.identifier.citedreference | Choi, K. S., Holtzheimer, P. E., Franco, A. R., Kelley, M. E., Dunlop, B. W., Hu, X. P., & Mayberg, H. S. ( 2014 ). Reconciling variable findings of white matter integrity in major depressive disorder. Neuropsychopharmacology, 39 ( 6 ), 1332 – 1339. https://doi.org/10.1038/npp.2013.345 | |
dc.identifier.citedreference | Cunningham, S. I., Tomasi, D., & Volkow, N. D. ( 2017 ). Structural and functional connectivity of the precuneus and thalamus to the default mode network. Human Brain Mapping, 38 ( 2 ), 938 – 956. https://doi.org/10.1002/hbm.23429 | |
dc.identifier.citedreference | Dale, A. M., Fischl, B., & Sereno, M. I. ( 1999 ). Cortical surface‐based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9 ( 2 ), 179 – 194. https://doi.org/10.1006/nimg.1998.0395 | |
dc.identifier.citedreference | Delaparte, L., Yeh, F. C., Adams, P., Malchow, A., Trivedi, M. H., Oquendo, M. A., … DeLorenzo, C. ( 2017 ). A comparison of structural connectivity in anxious depression versus non‐anxious depression. Journal of Psychiatric Research, 89, 38 – 47. https://doi.org/10.1016/j.jpsychires.2017.01.012 | |
dc.identifier.citedreference | Delorenzo, C., Delaparte, L., Thapa‐Chhetry, B., Miller, J. M., Mann, J. J., & Parsey, R. V. ( 2013 ). Prediction of selective serotonin reuptake inhibitor response using diffusion‐weighted MRI. Frontiers in Psychiatry, 4, 5. https://doi.org/10.3389/fpsyt.2013.00005 | |
dc.identifier.citedreference | Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. ( 2006 ). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31 ( 3 ), 968 – 980. https://doi.org/10.1016/j.neuroimage.2006.01.021 | |
dc.identifier.citedreference | Dudoit, S., & Fridlyand, J. ( 2003 ). Classification in microarray experiments. In T. P. Speed (Ed.), Statistical analysis of gene expression microarray data (pp. 93 – 158 ). Boca Raton, FL: Chapman & Hall/CRC. | |
dc.identifier.citedreference | Eker, C., & Gonul, A. S. ( 2010 ). Volumetric MRI studies of the hippocampus in major depressive disorder: Meanings of inconsistency and directions for future research. The World Journal of Biological Psychiatry, 11 ( 1 ), 19 – 35. https://doi.org/10.1080/15622970902737998 | |
dc.identifier.citedreference | Fallucca, E., MacMaster, F. P., Haddad, J., Easter, P., Dick, R., May, G., … Rosenberg, D. R. ( 2011 ). Distinguishing between major depressive disorder and obsessive‐compulsive disorder in children by measuring regional cortical thickness. Archives of General Psychiatry, 68 ( 5 ), 527 – 533. https://doi.org/10.1001/archgenpsychiatry.2011.36 | |
dc.identifier.citedreference | Fan, J., Feng, Y., & Song, R. ( 2011 ). Nonparametric independence screening in sparse ultra‐high‐dimensional additive models. Journal of the American Statistical Association, 106 ( 494 ), 544 – 557. | |
dc.identifier.citedreference | Fan, J., & Li, R. ( 2001 ). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96 ( 456 ), 1348 – 1360. | |
dc.identifier.citedreference | Fan, J., Samworth, R. J., & Wu, Y. ( 2009 ). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013 – 2038. | |
dc.identifier.citedreference | Fischl, B., & Dale, A. M. ( 2000 ). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97 ( 20 ), 11050 – 11055. https://doi.org/10.1073/pnas.200033797 | |
dc.identifier.citedreference | Fischl, B., Liu, A., & Dale, A. M. ( 2001 ). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20 ( 1 ), 70 – 80. https://doi.org/10.1109/42.906426 | |
dc.identifier.citedreference | Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. ( 2002 ). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33 ( 3 ), 341 – 355. | |
dc.identifier.citedreference | Fischl, B., Sereno, M. I., & Dale, A. M. ( 1999 ). Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system. NeuroImage, 9 ( 2 ), 195 – 207. https://doi.org/10.1006/nimg.1998.0396 | |
dc.identifier.citedreference | Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. ( 1999 ). High‐resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8 ( 4 ), 272 – 284. | |
dc.identifier.citedreference | Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. M. ( 2004 ). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14 ( 1 ), 11 – 22. | |
dc.identifier.citedreference | Fransson, P., & Marrelec, G. ( 2008 ). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42 ( 3 ), 1178 – 1184. https://doi.org/10.1016/j.neuroimage.2008.05.059 | |
dc.identifier.citedreference | Fried, E. I., Nesse, R. M., Zivin, K., Guille, C., & Sen, S. ( 2014 ). Depression is more than the sum score of its parts: Individual DSM symptoms have different risk factors. Psychological Medicine, 44 ( 10 ), 2067 – 2076. https://doi.org/10.1017/S0033291713002900 | |
dc.identifier.citedreference | Global Burden of Disease Study 2013 Collaborators. ( 2015 ). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990‐2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 386 ( 9995 ), 743 – 800. https://doi.org/10.1016/S0140-6736(15)60692-4 | |
dc.identifier.citedreference | Gonzalez de Castro, D., Clarke, P. A., Al‐Lazikani, B., & Workman, P. ( 2013 ). Personalized cancer medicine: Molecular diagnostics, predictive biomarkers, and drug resistance. Clinical Pharmacology and Therapeutics, 93 ( 3 ), 252 – 259. https://doi.org/10.1038/clpt.2012.237 | |
dc.identifier.citedreference | Grieve, S. M., Korgaonkar, M. S., Koslow, S. H., Gordon, E., & Williams, L. M. ( 2013 ). Widespread reductions in gray matter volume in depression. NeuroImage: Clinical, 3, 332 – 339. https://doi.org/10.1016/j.nicl.2013.08.016 | |
dc.identifier.citedreference | Guo, W., Liu, F., Yu, M., Zhang, J., Zhang, Z., Liu, J., … Zhao, J. ( 2014 ). Functional and anatomical brain deficits in drug‐naive major depressive disorder. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 54, 1 – 6. https://doi.org/10.1016/j.pnpbp.2014.05.008 | |
dc.identifier.citedreference | Hamilton, M. ( 1960 ). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23, 56 – 62. | |
dc.identifier.citedreference | Han, K. M., Choi, S., Jung, J., Na, K. S., Yoon, H. K., Lee, M. S., & Ham, B. J. ( 2014 ). Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. Journal of Affective Disorders, 155, 42 – 48. https://doi.org/10.1016/j.jad.2013.10.021 | |
dc.identifier.citedreference | Hare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W., & Rangel, A. ( 2008 ). Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. The Journal of Neuroscience, 28 ( 22 ), 5623 – 5630. https://doi.org/10.1523/JNEUROSCI.1309-08.2008 | |
dc.identifier.citedreference | Hastie, T., Tibshirani, R., & Friedman, J. H. ( 2001 ). The elements of statistical learning: Data mining, inference, and prediction: With 200 full‐color illustrations. New York, NY: Springer. | |
dc.identifier.citedreference | Hecht, D. ( 2010 ). Depression and the hyperactive right‐hemisphere. Neuroscience Research, 68 ( 2 ), 77 – 87. https://doi.org/10.1016/j.neures.2010.06.013 | |
dc.identifier.citedreference | Henderson, S. E., Johnson, A. R., Vallejo, A. I., Katz, L., Wong, E., & Gabbay, V. ( 2013 ). A preliminary study of white matter in adolescent depression: Relationships with illness severity, anhedonia, and irritability. Frontiers in Psychiatry, 4, 152. https://doi.org/10.3389/fpsyt.2013.00152 | |
dc.identifier.citedreference | Hofner, B., Boccuto, L., & Goker, M. ( 2015 ). Controlling false discoveries in high‐dimensional situations: Boosting with stability selection. BMC Bioinformatics, 16, 144. https://doi.org/10.1186/s12859-015-0575-3 | |
dc.identifier.citedreference | Hofner, B., & Hothorn, T. ( 2017 ). stabs: Stability Selection with Error Control, R package version R package version 0.6–2. Retrieved from https://CRAN.R-project.org/package=stabs | |
dc.identifier.citedreference | Huang, Y., Coupland, N. J., Lebel, R. M., Carter, R., Seres, P., Wilman, A. H., & Malykhin, N. V. ( 2013 ). Structural changes in hippocampal subfields in major depressive disorder: A high‐field magnetic resonance imaging study. Biological Psychiatry, 74 ( 1 ), 62 – 68. https://doi.org/10.1016/j.biopsych.2013.01.005 | |
dc.identifier.citedreference | Insel, T. R., & Cuthbert, B. N. ( 2009 ). Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biological Psychiatry, 66 ( 11 ), 988 – 989. https://doi.org/10.1016/j.biopsych.2009.10.008 | |
dc.identifier.citedreference | Iscan, Z., Jin, T. B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., … DeLorenzo, C. ( 2015 ). Test‐retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Human Brain Mapping, 36 ( 9 ), 3472 – 3485. https://doi.org/10.1002/hbm.22856 | |
dc.identifier.citedreference | Jaworska, N., MacMaster, F. P., Gaxiola, I., Cortese, F., Goodyear, B., & Ramasubbu, R. ( 2014 ). A preliminary study of the influence of age of onset and childhood trauma on cortical thickness in major depressive disorder. BioMed Research International, 2014, 410472. https://doi.org/10.1155/2014/410472 | |
dc.identifier.citedreference | Jaworska, N., MacMaster, F. P., Yang, X. R., Courtright, A., Pradhan, S., Gaxiola, I., … Ramasubbu, R. ( 2014 ). Influence of age of onset on limbic and paralimbic structures in depression. Psychiatry and Clinical Neurosciences, 68 ( 12 ), 812 – 820. https://doi.org/10.1111/pcn.12197 | |
dc.identifier.citedreference | Jolliffe, I. T. ( 2002 ). Principal component analysis ( 2nd ed.). New York, NY: Springer. | |
dc.identifier.citedreference | Jones, D. K., & Basser, P. J. ( 2004 ). "Squashing peanuts and smashing pumpkins": How noise distorts diffusion‐weighted MR data. Magnetic Resonance in Medicine, 52 ( 5 ), 979 – 993. https://doi.org/10.1002/mrm.20283 | |
dc.identifier.citedreference | Joober, R. ( 2013 ). On the simple and the complex in psychiatry, with reference to DSM 5 and research domain criteria. Journal of Psychiatry & Neuroscience, 38 ( 3 ), 148 – 151. https://doi.org/10.1503/jpn.130051 | |
dc.identifier.citedreference | Kessler, R. C., Amminger, G. P., Aguilar‐Gaxiola, S., Alonso, J., Lee, S., & Ustun, T. B. ( 2007 ). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20 ( 4 ), 359 – 364. https://doi.org/10.1097/YCO.0b013e32816ebc8c | |
dc.identifier.citedreference | Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. ( 2005 ). Lifetime prevalence and age‐of‐onset distributions of DSM‐IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62 ( 6 ), 593 – 602. https://doi.org/10.1001/archpsyc.62.6.593 | |
dc.identifier.citedreference | Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. ( 2005 ). Prevalence, severity, and comorbidity of 12‐month DSM‐IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62 ( 6 ), 617 – 627. https://doi.org/10.1001/archpsyc.62.6.617 | |
dc.identifier.citedreference | Kieseppa, T., Eerola, M., Mantyla, R., Neuvonen, T., Poutanen, V. P., Luoma, K., … Isometsa, E. ( 2010 ). Major depressive disorder and white matter abnormalities: A diffusion tensor imaging study with tract‐based spatial statistics. Journal of Affective Disorders, 120 ( 1–3 ), 240 – 244. https://doi.org/10.1016/j.jad.2009.04.023 | |
dc.identifier.citedreference | Klaassens, B. L., van Gerven, J. M. A., van der Grond, J., de Vos, F., Moller, C., & Rombouts, S. ( 2017 ). Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from Alzheimer’s disease. Frontiers in Aging Neuroscience, 9, 97. https://doi.org/10.3389/fnagi.2017.00097 | |
dc.identifier.citedreference | Korgaonkar, M. S., Grieve, S. M., Koslow, S. H., Gabrieli, J. D., Gordon, E., & Williams, L. M. ( 2011 ). Loss of white matter integrity in major depressive disorder: Evidence using tract‐based spatial statistical analysis of diffusion tensor imaging. Human Brain Mapping, 32 ( 12 ), 2161 – 2171. https://doi.org/10.1002/hbm.21178 | |
dc.identifier.citedreference | Kringelbach, M. L., & Rolls, E. T. ( 2004 ). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72 ( 5 ), 341 – 372. https://doi.org/10.1016/j.pneurobio.2004.03.006 | |
dc.identifier.citedreference | Kruijshaar, M. E., Barendregt, J., Vos, T., de Graaf, R., Spijker, J., & Andrews, G. ( 2005 ). Lifetime prevalence estimates of major depression: An indirect estimation method and a quantification of recall bias. European Journal of Epidemiology, 20 ( 1 ), 103 – 111. | |
dc.identifier.citedreference | Kupfer, D. J., Frank, E., & Phillips, M. L. ( 2012 ). Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet, 379 ( 9820 ), 1045 – 1055. https://doi.org/10.1016/S0140-6736(11)60602-8 | |
dc.identifier.citedreference | Liao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., … Gong, Q. ( 2013 ). Is depression a disconnection syndrome? Meta‐analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry & Neuroscience, 38 ( 1 ), 49 – 56. https://doi.org/10.1503/jpn.110180 | |
dc.identifier.citedreference | Lim, J., Oh, I. K., Han, C., Huh, Y. J., Jung, I. K., Patkar, A. A., … Jang, B. H. ( 2013 ). Sensitivity of cognitive tests in four cognitive domains in discriminating MDD patients from healthy controls: A meta‐analysis. International Psychogeriatrics, 25 ( 9 ), 1543 – 1557. https://doi.org/10.1017/S1041610213000689 | |
dc.identifier.citedreference | Liu, Z., Wang, Y., Gerig, G., Gouttard, S., Tao, R., Fletcher, T., & Styner, M. ( 2010 ). Quality control of diffusion weighted images. Paper presented at the SPIE Medical Imaging. Proceedings of SPIE, the International Society for optics and photonics, March 11; 7628. https://doi.org/10.1117/12.844748. | |
dc.identifier.citedreference | Lorenzetti, V., Allen, N. B., Fornito, A., & Yucel, M. ( 2009 ). Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies. Journal of Affective Disorders, 117 ( 1–2 ), 1 – 17. https://doi.org/10.1016/j.jad.2008.11.021 | |
dc.identifier.citedreference | Mackin, R. S., Tosun, D., Mueller, S. G., Lee, J. Y., Insel, P., Schuff, N., … Weiner, M. W. ( 2013 ). Patterns of reduced cortical thickness in late‐life depression and relationship to psychotherapeutic response. The American Journal of Geriatric Psychiatry, 21 ( 8 ), 794 – 802. https://doi.org/10.1016/j.jagp.2013.01.013 | |
dc.identifier.citedreference | Madan, C. R. ( 2017 ). Advances in studying brain morphology: The benefits of open‐access data. Frontiers in Human Neuroscience, 11, 405. https://doi.org/10.3389/fnhum.2017.00405 | |
dc.identifier.citedreference | Maser, J. D. ( 1987 ). Depression and expressive behavior. Hillsdale, NJ: L. Erlbaum Associates. | |
dc.identifier.citedreference | Matthews, S. C., Strigo, I. A., Simmons, A. N., O’Connell, R. M., Reinhardt, L. E., & Moseley, S. A. ( 2011 ). A multimodal imaging study in U.S. veterans of operations Iraqi and enduring freedom with and without major depression after blast‐related concussion. NeuroImage, 54 ( Suppl 1 ), S69 – S75. https://doi.org/10.1016/j.neuroimage.2010.04.269 | |
dc.identifier.citedreference | Meinshausen, N., & Bühlmann, P. ( 2010 ). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72 ( 4 ), 417 – 473. | |
dc.identifier.citedreference | Mihaly, Z., Kormos, M., Lanczky, A., Dank, M., Budczies, J., Szasz, M. A., & Gyorffy, B. ( 2013 ). A meta‐analysis of gene expression‐based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Research and Treatment, 140 ( 2 ), 219 – 232. https://doi.org/10.1007/s10549-013-2622-y | |
dc.identifier.citedreference | Milak, M. S., Parsey, R. V., Keilp, J., Oquendo, M. A., Malone, K. M., & Mann, J. J. ( 2005 ). Neuroanatomic correlates of psychopathologic components of major depressive disorder. Archives of General Psychiatry, 62 ( 4 ), 397 – 408. https://doi.org/10.1001/Archpsyc.62.4.397 | |
dc.identifier.citedreference | Mossner, R., Mikova, O., Koutsilieri, E., Saoud, M., Ehlis, A. C., Muller, N., … Riederer, P. ( 2007 ). Consensus paper of the WFSBP task force on biological markers: Biological markers in depression. The World Journal of Biological Psychiatry, 8 ( 3 ), 141 – 174. https://doi.org/10.1080/15622970701263303 | |
dc.identifier.citedreference | Murphy, M. L., & Frodl, T. ( 2011 ). Meta‐analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biology of Mood and Anxiety Disorders, 1 ( 1 ), 3. https://doi.org/10.1186/2045-5380-1-3 | |
dc.identifier.citedreference | Murray, C. J., & Lopez, A. D. ( 1996 ). Evidence‐based health policy—Lessons from the global burden of disease study. Science, 274 ( 5288 ), 740 – 743. | |
dc.identifier.citedreference | Mwangi, B., Ebmeier, K., Matthews, K., & Steele, J. ( 2012 ). Multi‐center diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain, 135 ( 5 ), 1508 – 1521. | |
dc.identifier.citedreference | Namkung, H., Kim, S. H., & Sawa, A. ( 2017 ). The insula: An underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends in Neurosciences, 40 ( 4 ), 200 – 207. https://doi.org/10.1016/j.tins.2017.02.002 | |
dc.identifier.citedreference | Newman, A. M., Gallo, N. B., Hancox, L. S., Miller, N. J., Radeke, C. M., Maloney, M. A., … Radeke, M. J. ( 2012 ). Systems‐level analysis of age‐related macular degeneration reveals global biomarkers and phenotype‐specific functional networks. Genome Medicine, 4 ( 2 ), 16. https://doi.org/10.1186/gm315 | |
dc.identifier.citedreference | Olsen, L. R., Jensen, D. V., Noerholm, V., Martiny, K., & Bech, P. ( 2003 ). The internal and external validity of the major depression inventory in measuring severity of depressive states. Psychological Medicine, 33 ( 2 ), 351 – 356. | |
dc.identifier.citedreference | Olvet, D. M., Delaparte, L., Yeh, F. C., DeLorenzo, C., McGrath, P. J., Weissman, M. M., … Parsey, R. V. ( 2016 ). A comprehensive examination of white matter tracts and connectometry in major depressive disorder. Depression and Anxiety, 33 ( 1 ), 56 – 65. https://doi.org/10.1002/da.22445 | |
dc.identifier.citedreference | Olvet, D. M., Peruzzo, D., Thapa‐Chhetry, B., Sublette, M. E., Sullivan, G. M., Oquendo, M. A., … Parsey, R. V. ( 2014 ). A diffusion tensor imaging study of suicide attempters. Journal of Psychiatric Research, 51, 60 – 67. https://doi.org/10.1016/j.jpsychires.2014.01.002 | |
dc.identifier.citedreference | Osoba, A., Hanggi, J., Li, M., Horn, D. I., Metzger, C., Eckert, U., … Walter, M. ( 2013 ). Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus—A DTI study in major depressive disorder. Journal of Affective Disorders, 149 ( 1–3 ), 116 – 128. https://doi.org/10.1016/j.jad.2012.12.026 | |
dc.identifier.citedreference | Ostergaard, S. D., Jensen, S. O., & Bech, P. ( 2011 ). The heterogeneity of the depressive syndrome: When numbers get serious. Acta Psychiatrica Scandinavica, 124 ( 6 ), 495 – 496. https://doi.org/10.1111/j.1600-0447.2011.01744.x | |
dc.identifier.citedreference | Palucha, A., & Pilc, A. ( 2007 ). Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacology & Therapeutics, 115 ( 1 ), 116 – 147. https://doi.org/10.1016/j.pharmthera.2007.04.007 | |
dc.identifier.citedreference | Parker, J. G., Zalusky, E. J., & Kirbas, C. ( 2014 ). Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search. Brain and Behavior: A Cognitive Neuroscience Perspective, 4 ( 2 ), 227 – 237. https://doi.org/10.1002/brb3.213 | |
dc.identifier.citedreference | Patel, M. J., Andreescu, C., Price, J. C., Edelman, K. L., Reynolds, C. F., & Aizenstein, H. J. ( 2015 ). Machine learning approaches for integrating clinical and imaging features in latelife depression classification and response prediction. International Journal of Geriatric Psychiatry, 30, 1056 – 1067. | |
dc.identifier.citedreference | Patten, S. B. ( 2003 ). Recall bias and major depression lifetime prevalence. Social Psychiatry and Psychiatric Epidemiology, 38 ( 6 ), 290 – 296. https://doi.org/10.1007/s00127-003-0649-9 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.