Show simple item record

Development and evaluation of a multimodal marker of major depressive disorder

dc.contributor.authorYang, Jie
dc.contributor.authorZhang, Mengru
dc.contributor.authorAhn, Hongshik
dc.contributor.authorZhang, Qing
dc.contributor.authorJin, Tony B.
dc.contributor.authorLi, Ien
dc.contributor.authorNemesure, Matthew
dc.contributor.authorJoshi, Nandita
dc.contributor.authorJiang, Haoran
dc.contributor.authorMiller, Jeffrey M.
dc.contributor.authorOgden, Robert Todd
dc.contributor.authorPetkova, Eva
dc.contributor.authorMilak, Matthew S.
dc.contributor.authorSublette, Mary Elizabeth
dc.contributor.authorSullivan, Gregory M.
dc.contributor.authorTrivedi, Madhukar H.
dc.contributor.authorWeissman, Myrna
dc.contributor.authorMcGrath, Patrick J.
dc.contributor.authorFava, Maurizio
dc.contributor.authorKurian, Benji T.
dc.contributor.authorPizzagalli, Diego A.
dc.contributor.authorCooper, Crystal M.
dc.contributor.authorMcInnis, Melvin
dc.contributor.authorOquendo, Maria A.
dc.contributor.authorMann, Joseph John
dc.contributor.authorParsey, Ramin V.
dc.contributor.authorDeLorenzo, Christine
dc.date.accessioned2018-11-20T15:36:17Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationYang, Jie; Zhang, Mengru; Ahn, Hongshik; Zhang, Qing; Jin, Tony B.; Li, Ien; Nemesure, Matthew; Joshi, Nandita; Jiang, Haoran; Miller, Jeffrey M.; Ogden, Robert Todd; Petkova, Eva; Milak, Matthew S.; Sublette, Mary Elizabeth; Sullivan, Gregory M.; Trivedi, Madhukar H.; Weissman, Myrna; McGrath, Patrick J.; Fava, Maurizio; Kurian, Benji T.; Pizzagalli, Diego A.; Cooper, Crystal M.; McInnis, Melvin; Oquendo, Maria A.; Mann, Joseph John; Parsey, Ramin V.; DeLorenzo, Christine (2018). "Development and evaluation of a multimodal marker of major depressive disorder." Human Brain Mapping 39(11): 4420-4439.
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.urihttps://hdl.handle.net/2027.42/146504
dc.description.abstractThis study aimed to identify biomarkers of major depressive disorder (MDD), by relating neuroimage‐derived measures to binary (MDD/control), ordinal (severe MDD/mild MDD/control), or continuous (depression severity) outcomes. To address MDD heterogeneity, factors (severity of psychic depression, motivation, anxiety, psychosis, and sleep disturbance) were also used as outcomes. A multisite, multimodal imaging (diffusion MRI [dMRI] and structural MRI [sMRI]) cohort (52 controls and 147 MDD patients) and several modeling techniques—penalized logistic regression, random forest, and support vector machine (SVM)—were used. An additional cohort (25 controls and 83 MDD patients) was used for validation. The optimally performing classifier (SVM) had a 26.0% misclassification rate (binary), 52.2 ± 1.69% accuracy (ordinal) and r = .36 correlation coefficient (p < .001, continuous). Using SVM, R2 values for prediction of any MDD factors were <10%. Binary classification in the external data set resulted in 87.95% sensitivity and 32.00% specificity. Though observed classification rates are too low for clinical utility, four image‐based features contributed to accuracy across all models and analyses—two dMRI‐based measures (average fractional anisotropy in the right cuneus and left insula) and two sMRI‐based measures (asymmetry in the volume of the pars triangularis and the cerebellum) and may serve as a priori regions for future analyses. The poor accuracy of classification and predictive results found here reflects current equivocal findings and sheds light on challenges of using these modalities for MDD biomarker identification. Further, this study suggests a paradigm (e.g., multiple classifier evaluation with external validation) for future studies to avoid nongeneralizable results.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othermajor depressive disorder
dc.subject.otherstructural MRI
dc.subject.othersupport vector machine
dc.subject.otherdiffusion MRI
dc.subject.othermagnetic resonance imaging
dc.titleDevelopment and evaluation of a multimodal marker of major depressive disorder
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146504/1/hbm24282_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146504/2/hbm24282.pdf
dc.identifier.doi10.1002/hbm.24282
dc.identifier.sourceHuman Brain Mapping
dc.identifier.citedreferencePhillips, M. L. ( 2012 ). Neuroimaging in psychiatry: Bringing neuroscience into clinical practice. The British Journal of Psychiatry, 201 ( 1 ), 1 – 3. https://doi.org/10.1192/bjp.bp.112.109587
dc.identifier.citedreferencePeng, H. J., Zheng, H. R., Ning, Y. P., Zhang, Y., Shan, B. C., Zhang, L., … Li, L. J. ( 2013 ). Abnormalities of cortical‐limbic‐cerebellar white matter networks may contribute to treatment‐resistant depression: A diffusion tensor imaging study. BMC Psychiatry, 13, 72. https://doi.org/10.1186/1471-244x-13-72
dc.identifier.citedreferencePerlman, G., Bartlett, E., DeLorenzo, C., Weissman, M., McGrath, P., Ogden, T., … Parsey, R. ( 2017 ). Cortical thickness is not associated with current depression in a clinical treatment study. Human Brain Mapping, 38 ( 9 ), 4370 – 4385. https://doi.org/10.1002/hbm.23664
dc.identifier.citedreferencePeterson, B. S., Warner, V., Bansal, R., Zhu, H., Hao, X., Liu, J., … Weissman, M. M. ( 2009 ). Cortical thinning in persons at increased familial risk for major depression. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 15 ), 6273 – 6278. https://doi.org/10.1073/pnas.0805311106
dc.identifier.citedreferencePeterson, B. S., & Weissman, M. M. ( 2011 ). A brain‐based endophenotype for major depressive disorder. Annual Review of Medicine, 62, 461 – 474.
dc.identifier.citedreferencePhillips, J. R., Hewedi, D. H., Eissa, A. M., & Moustafa, A. A. ( 2015 ). The cerebellum and psychiatric disorders. Frontiers in Public Health, 3, 66. https://doi.org/10.3389/fpubh.2015.00066
dc.identifier.citedreferencePrice, J. L., & Drevets, W. C. ( 2010 ). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35 ( 1 ), 192 – 216. https://doi.org/10.1038/npp.2009.104
dc.identifier.citedreferenceQiu, L., Huang, X., Zhang, J., Wang, Y., Kuang, W., Li, J., … Gong, Q. ( 2014 ). Characterization of major depressive disorder using a multiparametric classification approach based on high resolution structural images. Journal of Psychiatry & Neuroscience, 39 ( 2 ), 78 – 86.
dc.identifier.citedreferenceQiu, L., Lui, S., Kuang, W., Huang, X., Li, J., Li, J., … Gong, Q. ( 2014 ). Regional increases of cortical thickness in untreated, first‐episode major depressive disorder. Translational Psychiatry, 4, e378. https://doi.org/10.1038/tp.2014.18
dc.identifier.citedreferenceR Core Team. ( 2015 ). A language and environment for statistical computing. Retrieved from https://www.R-project.org/.
dc.identifier.citedreferenceReynolds, S., Carrey, N., Jaworska, N., Langevin, L. M., Yang, X. R., & Macmaster, F. P. ( 2014 ). Cortical thickness in youth with major depressive disorder. BMC Psychiatry, 14, 83. https://doi.org/10.1186/1471-244X-14-83
dc.identifier.citedreferenceRizk, M. M., Rubin‐Falcone, H., Keilp, J., Miller, J. M., Sublette, M. E., Burke, A., … Mann, J. J. ( 2017 ). White matter correlates of impaired attention control in major depressive disorder and healthy volunteers. Journal of Affective Disorders, 222, 103 – 111. https://doi.org/10.1016/j.jad.2017.06.066
dc.identifier.citedreferenceRolls, E. T. ( 2004a ). Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 281 ( 1 ), 1212 – 1225. https://doi.org/10.1002/ar.a.20126
dc.identifier.citedreferenceRolls, E. T. ( 2004b ). The functions of the orbitofrontal cortex. Brain and Cognition, 55 ( 1 ), 11 – 29. https://doi.org/10.1016/S0278-2626(03)00277-X
dc.identifier.citedreferenceSchmaal, L., Hibar, D. P., Samann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Veltman, D. J. ( 2016 ). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22, 900 – 909. https://doi.org/10.1038/mp.2016.60
dc.identifier.citedreferenceSegonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. ( 2004 ). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22 ( 3 ), 1060 – 1075. https://doi.org/10.1016/j.neuroimage.2004.03.032
dc.identifier.citedreferenceSegonne, F., Pacheco, J., & Fischl, B. ( 2007 ). Geometrically accurate topology‐correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26 ( 4 ), 518 – 529. https://doi.org/10.1109/TMI.2006.887364
dc.identifier.citedreferenceSerpa, M., Ou, Y., Schaufelberger, M., Doshi, J., Menezes, P., Scazufca, M., … Zanetti, M. ( 2014 ). Neuroanatomical classification in a population‐based sample of psychotic major depression and bipolar I disorder with 1 year of diagnostic stability. BioMed Research International, 2014, 706157.
dc.identifier.citedreferenceSexton, C. E., Allan, C. L., Le Masurier, M., McDermott, L. M., Kalu, U. G., Herrmann, L. L., … Ebmeier, K. P. ( 2012 ). Magnetic resonance imaging in late‐life depression: Multimodal examination of network disruption. Archives of General Psychiatry, 69 ( 7 ), 680 – 689. https://doi.org/10.1001/archgenpsychiatry.2011.1862
dc.identifier.citedreferenceSexton, C. E., Mackay, C. E., & Ebmeier, K. P. ( 2009 ). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry, 66 ( 9 ), 814 – 823. https://doi.org/10.1016/j.biopsych.2009.05.024
dc.identifier.citedreferenceShah, R. D., & Samworth, R. J. ( 2013 ). Variable selection with error control: Another look at stability selection. Journal of Royal Statistical Society, 75 ( 1 ), 55 – 80.
dc.identifier.citedreferenceShakiba, A. ( 2014 ). The role of the cerebellum in neurobiology of psychiatric disorders. Neurologic Clinics, 32 ( 4 ), 1105 – 1115. https://doi.org/10.1016/j.ncl.2014.07.008
dc.identifier.citedreferenceShao, J. ( 1993 ). Linear model selection by cross‐validation. Journal of the American Statistical Association, 88 ( 422 ), 486 – 494.
dc.identifier.citedreferenceSheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., … Raichle, M. E. ( 2009 ). The default mode network and self‐referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 6 ), 1942 – 1947. https://doi.org/10.1073/pnas.0812686106
dc.identifier.citedreferenceShizukuishi, T., Abe, O., & Aoki, S. ( 2013 ). Diffusion tensor imaging analysis for psychiatric disorders. Magnetic Resonance in Medical Sciences, 12 ( 3 ), 153 – 159.
dc.identifier.citedreferenceSingh, I., & Rose, N. ( 2009 ). Biomarkers in psychiatry. Nature, 460 ( 7252 ), 202 – 207. https://doi.org/10.1038/460202a
dc.identifier.citedreferenceSled, J. G., Zijdenbos, A. P., & Evans, A. C. ( 1998 ). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17 ( 1 ), 87 – 97. https://doi.org/10.1109/42.668698
dc.identifier.citedreferenceSliz, D., & Hayley, S. ( 2012 ). Major depressive disorder and alterations in insular cortical activity: A review of current functional magnetic imaging research. Frontiers in Human Neuroscience, 6, 323. https://doi.org/10.3389/fnhum.2012.00323
dc.identifier.citedreferenceSteyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., … Kattan, M. W. ( 2010 ). Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology, 21 ( 1 ), 128 – 138. https://doi.org/10.1097/EDE.0b013e3181c30fb2
dc.identifier.citedreferenceSui, J., Huster, R., Yu, Q., Segall, J. M., & Calhoun, V. D. ( 2013 ). Function‐structure associations of the brain: Evidence from multimodal connectivity and covariance studies. NeuroImage, 102, 11 – 23. https://doi.org/10.1016/j.neuroimage.2013.09.044
dc.identifier.citedreferenceSun, Y., Wong, A. K. C., & Kamel, M. S. ( 2009 ). Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23 ( 4 ), 687 – 719.
dc.identifier.citedreferenceTakahashi, T., Yucel, M., Lorenzetti, V., Walterfang, M., Kawasaki, Y., Whittle, S., … Allen, N. B. ( 2010 ). An MRI study of the superior temporal subregions in patients with current and past major depression. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 34 ( 1 ), 98 – 103. https://doi.org/10.1016/j.pnpbp.2009.10.005
dc.identifier.citedreferenceTakayanagi, Y., Spira, A. P., Roth, K. B., Gallo, J. J., Eaton, W. W., & Mojtabai, R. ( 2014 ). Accuracy of reports of lifetime mental and physical disorders: Results from the Baltimore Epidemiological Catchment Area study. JAMA Psychiatry, 71 ( 3 ), 273 – 280. https://doi.org/10.1001/jamapsychiatry.2013.3579
dc.identifier.citedreferenceTibshirani, R. ( 1996 ). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B (Methodological), 58 ( 1 ), 267 – 288.
dc.identifier.citedreferenceTreadway, M. T., Waskom, M. L., Dillon, D. G., Holmes, A. J., Park, M. T. M., Chakravarty, M. M., … Pizzagalli, D. A. ( 2015 ). Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biological Psychiatry, 77 ( 3 ), 285 – 294. https://doi.org/10.1016/j.biopsych.2014.06.018
dc.identifier.citedreferenceTrivedi, M. H., McGrath, P. J., Fava, M., Parsey, R. V., Kurian, B. T., Phillips, M. L., … Weissman, M. M. ( 2016 ). Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. Journal of Psychiatric Research, 78, 11 – 23. https://doi.org/10.1016/j.jpsychires.2016.03.001
dc.identifier.citedreferenceTu, P. C., Chen, L. F., Hsieh, J. C., Bai, Y. M., Li, C. T., & Su, T. P. ( 2012 ). Regional cortical thinning in patients with major depressive disorder: A surface‐based morphometry study. Psychiatry Research, 202 ( 3 ), 206 – 213. https://doi.org/10.1016/j.pscychresns.2011.07.011
dc.identifier.citedreferenceUgwu, I. D., Amico, F., Carballedo, A., Fagan, A. J., & Frodl, T. ( 2015 ). Childhood adversity, depression, age and gender effects on white matter microstructure: A DTI study. Brain Structure & Function, 220 ( 4 ), 1997 – 2009. https://doi.org/10.1007/s00429-014-0769-x
dc.identifier.citedreferenceUtevsky, A. V., Smith, D. V., & Huettel, S. A. ( 2014 ). Precuneus is a functional core of the default‐mode network. The Journal of Neuroscience, 34 ( 3 ), 932 – 940. https://doi.org/10.1523/JNEUROSCI.4227-13.2014
dc.identifier.citedreferenceVan Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B., Pencina, M. J., & Steyerberg, E. W. ( 2016 ). A calibration hierarchy for risk models was defined: From utopia to empirical data. Journal of Clinical Epidemiology, 74, 167 – 176. https://doi.org/10.1016/j.jclinepi.2015.12.005
dc.identifier.citedreferencevan Tol, M. J., van der Wee, N. J., van den Heuvel, O. A., Nielen, M. M., Demenescu, L. R., Aleman, A., … Veltman, D. J. ( 2010 ). Regional brain volume in depression and anxiety disorders. Archives of General Psychiatry, 67 ( 10 ), 1002 – 1011. https://doi.org/10.1001/archgenpsychiatry.2010.121
dc.identifier.citedreferenceWells, J. E., & Horwood, L. J. ( 2004 ). How accurate is recall of key symptoms of depression? A comparison of recall and longitudinal reports. Psychological Medicine, 34 ( 6 ), 1001 – 1011.
dc.identifier.citedreferenceWhittle, S., Lichter, R., Dennison, M., Vijayakumar, N., Schwartz, O., Byrne, M. L., … Allen, N. B. ( 2014 ). Structural brain development and depression onset during adolescence: A prospective longitudinal study. The American Journal of Psychiatry, 171 ( 5 ), 564 – 571. https://doi.org/10.1176/appi.ajp.2013.13070920
dc.identifier.citedreferenceWolpert, D. H., & Macready, W. G. ( 1997 ). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1 ( 1 ), 67 – 87.
dc.identifier.citedreferenceWorld Health Organization. ( 2012 ). Depression. Fact sheet N 369. Retrieved from http://www.who.int/mediacentre/factsheets/fs369/en/
dc.identifier.citedreferenceZhang, C.‐H. ( 2010 ). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38, 894 – 942.
dc.identifier.citedreferenceZiegler, A., Koch, A., Krockenberger, K., & Grosshennig, A. ( 2012 ). Personalized medicine using DNA biomarkers: A review. Human Genetics, 131 ( 10 ), 1627 – 1638. https://doi.org/10.1007/s00439-012-1188-9
dc.identifier.citedreferenceAbe, O., Yamasue, H., Kasai, K., Yamada, H., Aoki, S., Inoue, H., … Ohtomo, K. ( 2010 ). Voxel‐based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Research, 181 ( 1 ), 64 – 70. https://doi.org/10.1016/j.pscychresns.2009.07.007
dc.identifier.citedreferenceAghajani, M., Veer, I. M., van Lang, N. D., Meens, P. H., van den Bulk, B. G., Rombouts, S. A., … van der Wee, N. J. ( 2014 ). Altered white‐matter architecture in treatment‐naive adolescents with clinical depression. Psychological Medicine, 44 ( 11 ), 2287 – 2298. https://doi.org/10.1017/S0033291713003000
dc.identifier.citedreferenceAizenstein, H. J., Khalaf, A., Walker, S. E., & Andreescu, C. ( 2014 ). Magnetic resonance imaging predictors of treatment response in late‐life depression. Journal of Geriatric Psychiatry and Neurology, 27 ( 1 ), 24 – 32. https://doi.org/10.1177/0891988713516541
dc.identifier.citedreferenceAlexander, D. C., & Barker, G. J. ( 2005 ). Optimal imaging parameters for fiber‐orientation estimation in diffusion MRI. NeuroImage, 27 ( 2 ), 357 – 367. https://doi.org/10.1016/j.neuroimage.2005.04.008
dc.identifier.citedreferenceAmico, F., Meisenzahl, E., Koutsouleris, N., Reiser, M., Moller, H. J., & Frodl, T. ( 2011 ). Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry & Neuroscience, 36 ( 1 ), 15 – 22. https://doi.org/10.1503/jpn.090186
dc.identifier.citedreferenceArbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. ( 2016 ). Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage, 145, 137 – 165. https://doi.org/10.1016/j.neuroimage.2016.02.079
dc.identifier.citedreferenceArdila, A., Bernal, B., & Rosselli, M. ( 2015 ). Language and visual perception associations: Meta‐analytic connectivity modeling of Brodmann area 37. Behavioural Neurology, 2015 565871, 1 – 14. https://doi.org/10.1155/2015/565871
dc.identifier.citedreferenceArdila, A., Bernal, B., & Rosselli, M. ( 2016 ). How localized are language brain areas? A review of Brodmann areas involvement in oral language. Archives of Clinical Neuropsychology, 31 ( 1 ), 112 – 122. https://doi.org/10.1093/arclin/acv081
dc.identifier.citedreferenceAustin, P. C., & Steyerberg, E. W. ( 2014 ). Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Statistics in Medicine, 33 ( 3 ), 517 – 535. https://doi.org/10.1002/sim.5941
dc.identifier.citedreferenceBaldacara, L., Borgio, J. G., Lacerda, A. L., & Jackowski, A. P. ( 2008 ). Cerebellum and psychiatric disorders. Revista Brasileira de Psiquiatria, 30 ( 3 ), 281 – 289.
dc.identifier.citedreferenceBijanki, K. R., Hodis, B., Brumm, M. C., Harlynn, E. L., & McCormick, L. M. ( 2014 ). Hippocampal and left subcallosal anterior cingulate atrophy in psychotic depression. PLoS One, 9 ( 10 ), e110770. https://doi.org/10.1371/journal.pone.0110770
dc.identifier.citedreferenceBreiman, L. ( 2001 ). Random forests. Machine Learning, 45 ( 1 ), 5 – 32. https://doi.org/10.1023/A:1010933404324
dc.identifier.citedreferenceBriceno, E. M., Weisenbach, S. L., Rapport, L. J., Hazlett, K. E., Bieliauskas, L. A., Haase, B. D., … Langenecker, S. A. ( 2013 ). Shifted inferior frontal laterality in women with major depressive disorder is related to emotion‐processing deficits. Psychological Medicine, 43 ( 7 ), 1433 – 1445. https://doi.org/10.1017/S0033291712002176
dc.identifier.citedreferenceChawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. ( 2002 ). SMOTE: Synthetic minority over‐sampling technique. Journal of Artificial Intelligence Research, 16, 321 – 357.
dc.identifier.citedreferenceCherbuin, N., Reglade‐Meslin, C., Kumar, R., Sachdev, P., & Anstey, K. J. ( 2010 ). Mild cognitive disorders are associated with different patterns of brain asymmetry than normal aging: The PATH through life study. Frontiers in Psychiatry, 1, 11. https://doi.org/10.3389/fpsyt.2010.00011
dc.identifier.citedreferenceChoi, K., Craddock, R. C., Holtzheimer, P. E., Yang, Z., Hu, X., & Mayberg, H. ( 2008 ). A combined functional–structural connectivity analysis of major depression using joint independent components analysis. Psychiatric MRI/MRS, 16, 3 – 9.
dc.identifier.citedreferenceChoi, K. S., Holtzheimer, P. E., Franco, A. R., Kelley, M. E., Dunlop, B. W., Hu, X. P., & Mayberg, H. S. ( 2014 ). Reconciling variable findings of white matter integrity in major depressive disorder. Neuropsychopharmacology, 39 ( 6 ), 1332 – 1339. https://doi.org/10.1038/npp.2013.345
dc.identifier.citedreferenceCunningham, S. I., Tomasi, D., & Volkow, N. D. ( 2017 ). Structural and functional connectivity of the precuneus and thalamus to the default mode network. Human Brain Mapping, 38 ( 2 ), 938 – 956. https://doi.org/10.1002/hbm.23429
dc.identifier.citedreferenceDale, A. M., Fischl, B., & Sereno, M. I. ( 1999 ). Cortical surface‐based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9 ( 2 ), 179 – 194. https://doi.org/10.1006/nimg.1998.0395
dc.identifier.citedreferenceDelaparte, L., Yeh, F. C., Adams, P., Malchow, A., Trivedi, M. H., Oquendo, M. A., … DeLorenzo, C. ( 2017 ). A comparison of structural connectivity in anxious depression versus non‐anxious depression. Journal of Psychiatric Research, 89, 38 – 47. https://doi.org/10.1016/j.jpsychires.2017.01.012
dc.identifier.citedreferenceDelorenzo, C., Delaparte, L., Thapa‐Chhetry, B., Miller, J. M., Mann, J. J., & Parsey, R. V. ( 2013 ). Prediction of selective serotonin reuptake inhibitor response using diffusion‐weighted MRI. Frontiers in Psychiatry, 4, 5. https://doi.org/10.3389/fpsyt.2013.00005
dc.identifier.citedreferenceDesikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. ( 2006 ). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31 ( 3 ), 968 – 980. https://doi.org/10.1016/j.neuroimage.2006.01.021
dc.identifier.citedreferenceDudoit, S., & Fridlyand, J. ( 2003 ). Classification in microarray experiments. In T. P. Speed (Ed.), Statistical analysis of gene expression microarray data (pp. 93 – 158 ). Boca Raton, FL: Chapman & Hall/CRC.
dc.identifier.citedreferenceEker, C., & Gonul, A. S. ( 2010 ). Volumetric MRI studies of the hippocampus in major depressive disorder: Meanings of inconsistency and directions for future research. The World Journal of Biological Psychiatry, 11 ( 1 ), 19 – 35. https://doi.org/10.1080/15622970902737998
dc.identifier.citedreferenceFallucca, E., MacMaster, F. P., Haddad, J., Easter, P., Dick, R., May, G., … Rosenberg, D. R. ( 2011 ). Distinguishing between major depressive disorder and obsessive‐compulsive disorder in children by measuring regional cortical thickness. Archives of General Psychiatry, 68 ( 5 ), 527 – 533. https://doi.org/10.1001/archgenpsychiatry.2011.36
dc.identifier.citedreferenceFan, J., Feng, Y., & Song, R. ( 2011 ). Nonparametric independence screening in sparse ultra‐high‐dimensional additive models. Journal of the American Statistical Association, 106 ( 494 ), 544 – 557.
dc.identifier.citedreferenceFan, J., & Li, R. ( 2001 ). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96 ( 456 ), 1348 – 1360.
dc.identifier.citedreferenceFan, J., Samworth, R. J., & Wu, Y. ( 2009 ). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013 – 2038.
dc.identifier.citedreferenceFischl, B., & Dale, A. M. ( 2000 ). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97 ( 20 ), 11050 – 11055. https://doi.org/10.1073/pnas.200033797
dc.identifier.citedreferenceFischl, B., Liu, A., & Dale, A. M. ( 2001 ). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20 ( 1 ), 70 – 80. https://doi.org/10.1109/42.906426
dc.identifier.citedreferenceFischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. ( 2002 ). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33 ( 3 ), 341 – 355.
dc.identifier.citedreferenceFischl, B., Sereno, M. I., & Dale, A. M. ( 1999 ). Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system. NeuroImage, 9 ( 2 ), 195 – 207. https://doi.org/10.1006/nimg.1998.0396
dc.identifier.citedreferenceFischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. ( 1999 ). High‐resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8 ( 4 ), 272 – 284.
dc.identifier.citedreferenceFischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. M. ( 2004 ). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14 ( 1 ), 11 – 22.
dc.identifier.citedreferenceFransson, P., & Marrelec, G. ( 2008 ). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42 ( 3 ), 1178 – 1184. https://doi.org/10.1016/j.neuroimage.2008.05.059
dc.identifier.citedreferenceFried, E. I., Nesse, R. M., Zivin, K., Guille, C., & Sen, S. ( 2014 ). Depression is more than the sum score of its parts: Individual DSM symptoms have different risk factors. Psychological Medicine, 44 ( 10 ), 2067 – 2076. https://doi.org/10.1017/S0033291713002900
dc.identifier.citedreferenceGlobal Burden of Disease Study 2013 Collaborators. ( 2015 ). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990‐2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 386 ( 9995 ), 743 – 800. https://doi.org/10.1016/S0140-6736(15)60692-4
dc.identifier.citedreferenceGonzalez de Castro, D., Clarke, P. A., Al‐Lazikani, B., & Workman, P. ( 2013 ). Personalized cancer medicine: Molecular diagnostics, predictive biomarkers, and drug resistance. Clinical Pharmacology and Therapeutics, 93 ( 3 ), 252 – 259. https://doi.org/10.1038/clpt.2012.237
dc.identifier.citedreferenceGrieve, S. M., Korgaonkar, M. S., Koslow, S. H., Gordon, E., & Williams, L. M. ( 2013 ). Widespread reductions in gray matter volume in depression. NeuroImage: Clinical, 3, 332 – 339. https://doi.org/10.1016/j.nicl.2013.08.016
dc.identifier.citedreferenceGuo, W., Liu, F., Yu, M., Zhang, J., Zhang, Z., Liu, J., … Zhao, J. ( 2014 ). Functional and anatomical brain deficits in drug‐naive major depressive disorder. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 54, 1 – 6. https://doi.org/10.1016/j.pnpbp.2014.05.008
dc.identifier.citedreferenceHamilton, M. ( 1960 ). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23, 56 – 62.
dc.identifier.citedreferenceHan, K. M., Choi, S., Jung, J., Na, K. S., Yoon, H. K., Lee, M. S., & Ham, B. J. ( 2014 ). Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. Journal of Affective Disorders, 155, 42 – 48. https://doi.org/10.1016/j.jad.2013.10.021
dc.identifier.citedreferenceHare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W., & Rangel, A. ( 2008 ). Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. The Journal of Neuroscience, 28 ( 22 ), 5623 – 5630. https://doi.org/10.1523/JNEUROSCI.1309-08.2008
dc.identifier.citedreferenceHastie, T., Tibshirani, R., & Friedman, J. H. ( 2001 ). The elements of statistical learning: Data mining, inference, and prediction: With 200 full‐color illustrations. New York, NY: Springer.
dc.identifier.citedreferenceHecht, D. ( 2010 ). Depression and the hyperactive right‐hemisphere. Neuroscience Research, 68 ( 2 ), 77 – 87. https://doi.org/10.1016/j.neures.2010.06.013
dc.identifier.citedreferenceHenderson, S. E., Johnson, A. R., Vallejo, A. I., Katz, L., Wong, E., & Gabbay, V. ( 2013 ). A preliminary study of white matter in adolescent depression: Relationships with illness severity, anhedonia, and irritability. Frontiers in Psychiatry, 4, 152. https://doi.org/10.3389/fpsyt.2013.00152
dc.identifier.citedreferenceHofner, B., Boccuto, L., & Goker, M. ( 2015 ). Controlling false discoveries in high‐dimensional situations: Boosting with stability selection. BMC Bioinformatics, 16, 144. https://doi.org/10.1186/s12859-015-0575-3
dc.identifier.citedreferenceHofner, B., & Hothorn, T. ( 2017 ). stabs: Stability Selection with Error Control, R package version R package version 0.6–2. Retrieved from https://CRAN.R-project.org/package=stabs
dc.identifier.citedreferenceHuang, Y., Coupland, N. J., Lebel, R. M., Carter, R., Seres, P., Wilman, A. H., & Malykhin, N. V. ( 2013 ). Structural changes in hippocampal subfields in major depressive disorder: A high‐field magnetic resonance imaging study. Biological Psychiatry, 74 ( 1 ), 62 – 68. https://doi.org/10.1016/j.biopsych.2013.01.005
dc.identifier.citedreferenceInsel, T. R., & Cuthbert, B. N. ( 2009 ). Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biological Psychiatry, 66 ( 11 ), 988 – 989. https://doi.org/10.1016/j.biopsych.2009.10.008
dc.identifier.citedreferenceIscan, Z., Jin, T. B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., … DeLorenzo, C. ( 2015 ). Test‐retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Human Brain Mapping, 36 ( 9 ), 3472 – 3485. https://doi.org/10.1002/hbm.22856
dc.identifier.citedreferenceJaworska, N., MacMaster, F. P., Gaxiola, I., Cortese, F., Goodyear, B., & Ramasubbu, R. ( 2014 ). A preliminary study of the influence of age of onset and childhood trauma on cortical thickness in major depressive disorder. BioMed Research International, 2014, 410472. https://doi.org/10.1155/2014/410472
dc.identifier.citedreferenceJaworska, N., MacMaster, F. P., Yang, X. R., Courtright, A., Pradhan, S., Gaxiola, I., … Ramasubbu, R. ( 2014 ). Influence of age of onset on limbic and paralimbic structures in depression. Psychiatry and Clinical Neurosciences, 68 ( 12 ), 812 – 820. https://doi.org/10.1111/pcn.12197
dc.identifier.citedreferenceJolliffe, I. T. ( 2002 ). Principal component analysis ( 2nd ed.). New York, NY: Springer.
dc.identifier.citedreferenceJones, D. K., & Basser, P. J. ( 2004 ). "Squashing peanuts and smashing pumpkins": How noise distorts diffusion‐weighted MR data. Magnetic Resonance in Medicine, 52 ( 5 ), 979 – 993. https://doi.org/10.1002/mrm.20283
dc.identifier.citedreferenceJoober, R. ( 2013 ). On the simple and the complex in psychiatry, with reference to DSM 5 and research domain criteria. Journal of Psychiatry & Neuroscience, 38 ( 3 ), 148 – 151. https://doi.org/10.1503/jpn.130051
dc.identifier.citedreferenceKessler, R. C., Amminger, G. P., Aguilar‐Gaxiola, S., Alonso, J., Lee, S., & Ustun, T. B. ( 2007 ). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20 ( 4 ), 359 – 364. https://doi.org/10.1097/YCO.0b013e32816ebc8c
dc.identifier.citedreferenceKessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. ( 2005 ). Lifetime prevalence and age‐of‐onset distributions of DSM‐IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62 ( 6 ), 593 – 602. https://doi.org/10.1001/archpsyc.62.6.593
dc.identifier.citedreferenceKessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. ( 2005 ). Prevalence, severity, and comorbidity of 12‐month DSM‐IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62 ( 6 ), 617 – 627. https://doi.org/10.1001/archpsyc.62.6.617
dc.identifier.citedreferenceKieseppa, T., Eerola, M., Mantyla, R., Neuvonen, T., Poutanen, V. P., Luoma, K., … Isometsa, E. ( 2010 ). Major depressive disorder and white matter abnormalities: A diffusion tensor imaging study with tract‐based spatial statistics. Journal of Affective Disorders, 120 ( 1–3 ), 240 – 244. https://doi.org/10.1016/j.jad.2009.04.023
dc.identifier.citedreferenceKlaassens, B. L., van Gerven, J. M. A., van der Grond, J., de Vos, F., Moller, C., & Rombouts, S. ( 2017 ). Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from Alzheimer’s disease. Frontiers in Aging Neuroscience, 9, 97. https://doi.org/10.3389/fnagi.2017.00097
dc.identifier.citedreferenceKorgaonkar, M. S., Grieve, S. M., Koslow, S. H., Gabrieli, J. D., Gordon, E., & Williams, L. M. ( 2011 ). Loss of white matter integrity in major depressive disorder: Evidence using tract‐based spatial statistical analysis of diffusion tensor imaging. Human Brain Mapping, 32 ( 12 ), 2161 – 2171. https://doi.org/10.1002/hbm.21178
dc.identifier.citedreferenceKringelbach, M. L., & Rolls, E. T. ( 2004 ). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72 ( 5 ), 341 – 372. https://doi.org/10.1016/j.pneurobio.2004.03.006
dc.identifier.citedreferenceKruijshaar, M. E., Barendregt, J., Vos, T., de Graaf, R., Spijker, J., & Andrews, G. ( 2005 ). Lifetime prevalence estimates of major depression: An indirect estimation method and a quantification of recall bias. European Journal of Epidemiology, 20 ( 1 ), 103 – 111.
dc.identifier.citedreferenceKupfer, D. J., Frank, E., & Phillips, M. L. ( 2012 ). Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet, 379 ( 9820 ), 1045 – 1055. https://doi.org/10.1016/S0140-6736(11)60602-8
dc.identifier.citedreferenceLiao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., … Gong, Q. ( 2013 ). Is depression a disconnection syndrome? Meta‐analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry & Neuroscience, 38 ( 1 ), 49 – 56. https://doi.org/10.1503/jpn.110180
dc.identifier.citedreferenceLim, J., Oh, I. K., Han, C., Huh, Y. J., Jung, I. K., Patkar, A. A., … Jang, B. H. ( 2013 ). Sensitivity of cognitive tests in four cognitive domains in discriminating MDD patients from healthy controls: A meta‐analysis. International Psychogeriatrics, 25 ( 9 ), 1543 – 1557. https://doi.org/10.1017/S1041610213000689
dc.identifier.citedreferenceLiu, Z., Wang, Y., Gerig, G., Gouttard, S., Tao, R., Fletcher, T., & Styner, M. ( 2010 ). Quality control of diffusion weighted images. Paper presented at the SPIE Medical Imaging. Proceedings of SPIE, the International Society for optics and photonics, March 11; 7628. https://doi.org/10.1117/12.844748.
dc.identifier.citedreferenceLorenzetti, V., Allen, N. B., Fornito, A., & Yucel, M. ( 2009 ). Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies. Journal of Affective Disorders, 117 ( 1–2 ), 1 – 17. https://doi.org/10.1016/j.jad.2008.11.021
dc.identifier.citedreferenceMackin, R. S., Tosun, D., Mueller, S. G., Lee, J. Y., Insel, P., Schuff, N., … Weiner, M. W. ( 2013 ). Patterns of reduced cortical thickness in late‐life depression and relationship to psychotherapeutic response. The American Journal of Geriatric Psychiatry, 21 ( 8 ), 794 – 802. https://doi.org/10.1016/j.jagp.2013.01.013
dc.identifier.citedreferenceMadan, C. R. ( 2017 ). Advances in studying brain morphology: The benefits of open‐access data. Frontiers in Human Neuroscience, 11, 405. https://doi.org/10.3389/fnhum.2017.00405
dc.identifier.citedreferenceMaser, J. D. ( 1987 ). Depression and expressive behavior. Hillsdale, NJ: L. Erlbaum Associates.
dc.identifier.citedreferenceMatthews, S. C., Strigo, I. A., Simmons, A. N., O’Connell, R. M., Reinhardt, L. E., & Moseley, S. A. ( 2011 ). A multimodal imaging study in U.S. veterans of operations Iraqi and enduring freedom with and without major depression after blast‐related concussion. NeuroImage, 54 ( Suppl 1 ), S69 – S75. https://doi.org/10.1016/j.neuroimage.2010.04.269
dc.identifier.citedreferenceMeinshausen, N., & Bühlmann, P. ( 2010 ). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72 ( 4 ), 417 – 473.
dc.identifier.citedreferenceMihaly, Z., Kormos, M., Lanczky, A., Dank, M., Budczies, J., Szasz, M. A., & Gyorffy, B. ( 2013 ). A meta‐analysis of gene expression‐based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Research and Treatment, 140 ( 2 ), 219 – 232. https://doi.org/10.1007/s10549-013-2622-y
dc.identifier.citedreferenceMilak, M. S., Parsey, R. V., Keilp, J., Oquendo, M. A., Malone, K. M., & Mann, J. J. ( 2005 ). Neuroanatomic correlates of psychopathologic components of major depressive disorder. Archives of General Psychiatry, 62 ( 4 ), 397 – 408. https://doi.org/10.1001/Archpsyc.62.4.397
dc.identifier.citedreferenceMossner, R., Mikova, O., Koutsilieri, E., Saoud, M., Ehlis, A. C., Muller, N., … Riederer, P. ( 2007 ). Consensus paper of the WFSBP task force on biological markers: Biological markers in depression. The World Journal of Biological Psychiatry, 8 ( 3 ), 141 – 174. https://doi.org/10.1080/15622970701263303
dc.identifier.citedreferenceMurphy, M. L., & Frodl, T. ( 2011 ). Meta‐analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biology of Mood and Anxiety Disorders, 1 ( 1 ), 3. https://doi.org/10.1186/2045-5380-1-3
dc.identifier.citedreferenceMurray, C. J., & Lopez, A. D. ( 1996 ). Evidence‐based health policy—Lessons from the global burden of disease study. Science, 274 ( 5288 ), 740 – 743.
dc.identifier.citedreferenceMwangi, B., Ebmeier, K., Matthews, K., & Steele, J. ( 2012 ). Multi‐center diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain, 135 ( 5 ), 1508 – 1521.
dc.identifier.citedreferenceNamkung, H., Kim, S. H., & Sawa, A. ( 2017 ). The insula: An underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends in Neurosciences, 40 ( 4 ), 200 – 207. https://doi.org/10.1016/j.tins.2017.02.002
dc.identifier.citedreferenceNewman, A. M., Gallo, N. B., Hancox, L. S., Miller, N. J., Radeke, C. M., Maloney, M. A., … Radeke, M. J. ( 2012 ). Systems‐level analysis of age‐related macular degeneration reveals global biomarkers and phenotype‐specific functional networks. Genome Medicine, 4 ( 2 ), 16. https://doi.org/10.1186/gm315
dc.identifier.citedreferenceOlsen, L. R., Jensen, D. V., Noerholm, V., Martiny, K., & Bech, P. ( 2003 ). The internal and external validity of the major depression inventory in measuring severity of depressive states. Psychological Medicine, 33 ( 2 ), 351 – 356.
dc.identifier.citedreferenceOlvet, D. M., Delaparte, L., Yeh, F. C., DeLorenzo, C., McGrath, P. J., Weissman, M. M., … Parsey, R. V. ( 2016 ). A comprehensive examination of white matter tracts and connectometry in major depressive disorder. Depression and Anxiety, 33 ( 1 ), 56 – 65. https://doi.org/10.1002/da.22445
dc.identifier.citedreferenceOlvet, D. M., Peruzzo, D., Thapa‐Chhetry, B., Sublette, M. E., Sullivan, G. M., Oquendo, M. A., … Parsey, R. V. ( 2014 ). A diffusion tensor imaging study of suicide attempters. Journal of Psychiatric Research, 51, 60 – 67. https://doi.org/10.1016/j.jpsychires.2014.01.002
dc.identifier.citedreferenceOsoba, A., Hanggi, J., Li, M., Horn, D. I., Metzger, C., Eckert, U., … Walter, M. ( 2013 ). Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus—A DTI study in major depressive disorder. Journal of Affective Disorders, 149 ( 1–3 ), 116 – 128. https://doi.org/10.1016/j.jad.2012.12.026
dc.identifier.citedreferenceOstergaard, S. D., Jensen, S. O., & Bech, P. ( 2011 ). The heterogeneity of the depressive syndrome: When numbers get serious. Acta Psychiatrica Scandinavica, 124 ( 6 ), 495 – 496. https://doi.org/10.1111/j.1600-0447.2011.01744.x
dc.identifier.citedreferencePalucha, A., & Pilc, A. ( 2007 ). Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacology & Therapeutics, 115 ( 1 ), 116 – 147. https://doi.org/10.1016/j.pharmthera.2007.04.007
dc.identifier.citedreferenceParker, J. G., Zalusky, E. J., & Kirbas, C. ( 2014 ). Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search. Brain and Behavior: A Cognitive Neuroscience Perspective, 4 ( 2 ), 227 – 237. https://doi.org/10.1002/brb3.213
dc.identifier.citedreferencePatel, M. J., Andreescu, C., Price, J. C., Edelman, K. L., Reynolds, C. F., & Aizenstein, H. J. ( 2015 ). Machine learning approaches for integrating clinical and imaging features in latelife depression classification and response prediction. International Journal of Geriatric Psychiatry, 30, 1056 – 1067.
dc.identifier.citedreferencePatten, S. B. ( 2003 ). Recall bias and major depression lifetime prevalence. Social Psychiatry and Psychiatric Epidemiology, 38 ( 6 ), 290 – 296. https://doi.org/10.1007/s00127-003-0649-9
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.