Show simple item record

Committee II: Guidelines for cytologic sampling techniques of lung and mediastinal lymph nodes

dc.contributor.authorMichael, C. W.
dc.contributor.authorFaquin, W.
dc.contributor.authorJing, X.
dc.contributor.authorKaszuba, F.
dc.contributor.authorKazakov, J.
dc.contributor.authorMoon, E.
dc.contributor.authorToloza, E.
dc.contributor.authorWu, R. I.
dc.contributor.authorMoreira, A. L.
dc.date.accessioned2018-11-20T15:36:18Z
dc.date.available2019-12-02T14:55:10Zen
dc.date.issued2018-10
dc.identifier.citationMichael, C. W.; Faquin, W.; Jing, X.; Kaszuba, F.; Kazakov, J.; Moon, E.; Toloza, E.; Wu, R. I.; Moreira, A. L. (2018). "Committee II: Guidelines for cytologic sampling techniques of lung and mediastinal lymph nodes." Diagnostic Cytopathology 46(10): 815-825.
dc.identifier.issn8755-1039
dc.identifier.issn1097-0339
dc.identifier.urihttps://hdl.handle.net/2027.42/146505
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrapid on site evaluation
dc.subject.otherspecimen triage
dc.subject.otherbronchial brushings
dc.subject.otherand endobronchial ultrasound guided transbronchial fine‐needle aspiration
dc.subject.othertechniques for cytological study including bronchial washings
dc.subject.otherPapanicolaou Society of Cytopathology recommendations for pulmonary cytology
dc.subject.otherimaging studies
dc.subject.otherclinical evaluation
dc.titleCommittee II: Guidelines for cytologic sampling techniques of lung and mediastinal lymph nodes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146505/1/dc23975.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146505/2/dc23975_am.pdf
dc.identifier.doi10.1002/dc.23975
dc.identifier.sourceDiagnostic Cytopathology
dc.identifier.citedreferenceEberhardt R, Anantham D, Ernst A, Feller‐Kopman D, Herth F. Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial. Am J Respir Crit Care Med. 2007; 176: 36 – 41.
dc.identifier.citedreferenceYarmus LB, Akulian J, Lechtzin N, et al. Comparison of 21‐gauge and 22‐gauge aspiration needle in endobronchial ultrasound‐guided transbronchial needle aspiration: results of the American College of Chest Physicians Quality Improvement Registry, Education, and Evaluation Registry. Chest. 2013; 143: 1036 – 1043.
dc.identifier.citedreferenceXing J, Manos S, Monaco SE, Wilson DO, Pantanowitz L. Endobronchial ultrasound‐guided transbronchial needle aspiration: a pilot study to evaluate the utility of the ProCore biopsy needle for lymph node sampling. Acta Cytol. 2016; 60: 254 – 259.
dc.identifier.citedreferenceTyan C, Patel P, Czarnecka K, et al. Flexible 19‐gauge endobronchial ultrasound‐guided transbronchial needle aspiration needle: first experience. Respiration. 2017; 94: 52 – 57.
dc.identifier.citedreferenceMichaelson ED, Serafind SM. Quantitative differences in the cellular yield of two bronchial brushes. Am Rev Respir Dis. 1975; 112: 267 – 268.
dc.identifier.citedreferenceOst DE, Ernst A, Lei X, et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQuIRE Registry. Am J Respir Crit Care Med. 2016; 193: 68 – 77.
dc.identifier.citedreferenceGuimaraes MD, Marchiori E, Hochhegger B, Chojniak R, Gross JL. CT‐guided biopsy of lung lesions: defining the best needle option for a specific diagnosis. Clinics. 2014; 69: 335 – 340.
dc.identifier.citedreferenceManhire A, Charig M, Clelland C, et al. Guidelines for radiologically guided lung biopsy. Thorax. 2003; 58: 920 – 936.
dc.identifier.citedreferenceCollins BT, Chen AC, Wang JF, Bernadt CT, Sanati S. Improved laboratory resource utilization and patient care with the use of rapid on‐site evaluation for endobronchial ultrasound fine‐needle aspiration biopsy. Cancer Cytopathol. 2013; 121: 544 – 551.
dc.identifier.citedreferenceAlsharif M, Andrade RS, Groth SS, Stelow EB, Pambuccian SE. Endobronchial ultrasound‐guided transbronchial fine‐needle aspiration: the University of Minnesota experience, with emphasis on usefulness, adequacy assessment, and diagnostic difficulties. Am J Clin Pathol. 2008; 130: 434 – 443.
dc.identifier.citedreferenceFeller‐Kopman D, Yung RC, Burroughs F, Li QK. Cytology of endobronchial ultrasound‐guided transbronchial needle aspiration: a retrospective study with histology correlation. Cancer. 2009; 117: 482 – 490.
dc.identifier.citedreferenceNayak A, Sugrue C, Koenig S, Wasserman PG, Hoda S, Morgenstern NJ. Endobronchial ultrasound‐guided transbronchial needle aspirate (EBUS‐TBNA): a proposal for on‐site adequacy criteria. Diagn Cytopathol. 2012; 40: 128 – 137.
dc.identifier.citedreferenceJeffus SK, Joiner AK, Siegel ER, Massoll NA, Meena N, Chen C, Post SR, Bartter T. Rapid on‐site evaluation of EBUS‐TBNA specimens of lymph nodes: comparative analysis and recommendations for standardization. Cancer Cytopathol. 2015; 123: 362 – 372.
dc.identifier.citedreferenceThiryayi SA, Rana DN, Narine N, Najib M, Bailey S. Establishment of an endobronchial ultrasound‐guided transbronchial fine needle aspiration service with rapid on‐site evaluation: 2 years experience of a single UK centre. Cytopathology. 2016.
dc.identifier.citedreferenceMfokazi A, Wright CA, Louw M, et al. Direct comparison of liquid‐based and smear‐based cytology with and without rapid on‐site evaluation for fine needle aspirates of thoracic tumors. Diagn Cytopathol. 2016; 44: 363 – 368.
dc.identifier.citedreferenceWolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014; 138: 241 – 256.
dc.identifier.citedreferenceMoriarty AT, Nayar R, Auger M, et al. Nongynecologic cytology practice patterns: a survey of participants in the College of American Pathologists interlaboratory comparison program in nongynecologic cytopathology. Arch Pathol Lab Med. 2014; 138: 885 – 889.
dc.identifier.citedreferenceFischer AH, Schwartz MR, Moriarty AT, et al. Immunohistochemistry practices of cytopathology laboratories: a survey of participants in the College of American Pathologists Nongynecologic Cytopathology Education Program. Arch Pathol Lab Med. 2014; 138: 1167 – 1172.
dc.identifier.citedreferenceSturgis CD, Marshall CB, Barkan GA, et al. Respiratory cytology—current trends including endobronchial ultrasound‐guided biopsy and electromagnetic navigational bronchoscopy: analysis of data from a 2013 supplemental survey of participants in the College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytology. Arch Pathol Lab Med. 2016; 140: 22 – 28.
dc.identifier.citedreferenceMolina JR, Adjei AA, Jett JR. Advances in chemotherapy of non‐small cell lung cancer. Chest. 2006; 130: 1211 – 1219.
dc.identifier.citedreferenceMoreira AL, Eng J. Personalized therapy for lung cancer. Chest. 2014; 146: 1649 – 1657.
dc.identifier.citedreferenceRekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole‐tissue sections with validation in small specimens. Mod Pathol. 2011; 24: 1348 – 1359.
dc.identifier.citedreferenceTravis WD, Rekhtman N, Riley GJ, et al. Pathologic diagnosis of advanced lung cancer based on small biopsies and cytology: a paradigm shift. J Thorac Oncol. 2010; 5: 411 – 414.
dc.identifier.citedreferencevan der Heijden EH, Casal RF, Trisolini R, et al. Guideline for the acquisition and preparation of conventional and endobronchial ultrasound‐guided transbronchial needle aspiration specimens for the diagnosis and molecular testing of patients with known or suspected lung cancer. Respiration. 2014; 88: 500 – 517.
dc.identifier.citedreferenceLindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013; 8: 1343 – 1859.
dc.identifier.citedreferenceSauter JL, Grogg KL, Vrana JA, Law ME, Halvorson JL, Henry MR. Young investigator challenge: validation and optimization of immunohistochemistry protocols for use on cellient cell block specimens. Cancer Cytopathol. 2016; 124: 89 – 100.
dc.identifier.citedreferenceRoy‐Chowdhuri S, Goswami RS, Chen H, et al. Factors affecting the success of next‐generation sequencing in cytology specimens. Cancer Cytopathol. 2015; 123: 659 – 668.
dc.identifier.citedreferenceCannonier SA, Sterling JA. The role of hedgehog signaling in tumor induced bone disease. Cancers. 2015; 7: 1658 – 1683.
dc.identifier.citedreferenceRoy‐Chowdhuri S, Chow CW, Kane MK, et al. Optimizing the DNA yield for molecular analysis from cytologic preparations. Cancer Cytopathol. 2016; 124: 254 – 260.
dc.identifier.citedreferenceLayfield LJ, Baloch Z, Elsheikh T, et al. Standardized terminology and nomenclature for respiratory cytology: The Papanicolaou Society of Cytopathology guidelines. Diagn Cytopathol. 2016; 44: 399 – 409.
dc.identifier.citedreferenceLayfield LJ, Roy‐Chowdhuri S, Baloch Z, et al. Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: The papanicolaou society of cytopathology consensus recommendations for respiratory cytology. Diagn Cytopathol. 2016; 44: 1000 – 1009.
dc.identifier.citedreferenceMichael CW, Hoda RS, Saqi A, et al. Committee I: indications for pulmonary cytology sampling methods. Diagn Cytopathol. 2016; 44: 1010 – 1023.
dc.identifier.citedreferenceRivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence‐based clinical practice guidelines. Chest. 2013; 143: e142S – e165S.
dc.identifier.citedreferenceUke MS, Pathuthara S, Shaikh A, Kumar R, Kane S. Is the morning sputum sample superior to the fresh sputum sample for the detection of malignant cells?. Acta Cytol. 2017; 61: 223 – 229.
dc.identifier.citedreferenceKoss LG. The cytological diagnosis of cancer. Geriatrics. 1964; 19: 745 – 759.
dc.identifier.citedreferenceJones DP. Diagnostic work‐up of chest disease. Surg Clin North Am. 1980; 60: 743 – 755.
dc.identifier.citedreferenceHealy TM, Borrie J. Lung cancer diagnosis: evaluation of diagnostic techniques. New Zealand Med J. May 14 1975; 81: 423 – 424.
dc.identifier.citedreferenceGilpin C, Kim SJ, Lumb R, Rieder HL, Van Deun A, et al. Critical appraisal of current recommendations and practices for tuberculosis sputum smear microscopy. Int J Tuberc Lung Dis. 2007; 11: 946 – 952.
dc.identifier.citedreferenceMurray MP, Doherty CJ, Govan JR, Hill AT. Do processing time and storage of sputum influence quantitative bacteriology in bronchiectasis?. J Med Microbiol. 2010; 59: 829 – 833.
dc.identifier.citedreferenceHo J, Marks GB, Fox GJ. The impact of sputum quality on tuberculosis diagnosis: a systematic review. Int J Tuberc Lung Dis. 2015; 19: 537 – 544.
dc.identifier.citedreferenceSaraswathy Veena V, Sara George P, Jayasree K, Sujathan K. Comparative analysis of cell morphology in sputum samples homogenized with dithiothreitol, N‐acetyl‐L cysteine, Cytorich((R)) red preservative and in cellblock preparations to enhance the sensitivity of sputum cytology for the diagnosis of lung cancer. Diagn Cytopathol. 2015; 43: 551 – 558.
dc.identifier.citedreferenceChoi YD, Han CW, Kim JH, et al. Effectiveness of sputum cytology using ThinPrep method for evaluation of lung cancer. Diagn Cytopathol. 2008; 36: 167 – 171.
dc.identifier.citedreferenceWu GP, Wang EH, Li JH, Fu ZM, Han S. Clinical application of the liquid‐based cytological test in cytological screening of sputum for the diagnosis of lung cancer. Respirology. 2009; 14: 124 – 128.
dc.identifier.citedreferenceAgusti C, Xaubet A, Monton C, et al. Induced sputum in the diagnosis of peripheral lung cancer not visible endoscopically. Respir Med. 2001; 95: 822 – 828.
dc.identifier.citedreferenceBandyopadhyay T, Gerardi DA, Metersky ML. A comparison of induced and expectorated sputum for the microbiological diagnosis of community acquired pneumonia. Respiration. 2000; 67: 173 – 176.
dc.identifier.citedreferencePaggiaro PL, Chanez P, Holz O, et al. Sputum induction. Eur Respir J Suppl. 2002; 37: 3s – 8s.
dc.identifier.citedreferenceFishman JA, Roth RS, Zanzot E, Enos EJ, Ferraro MJ. Use of induced sputum specimens for microbiologic diagnosis of infections due to organisms other than Pneumocystis carinii. J Clin Microbiol. 1994; 32: 131 – 134.
dc.identifier.citedreferencePeter JG, Theron G, Pooran A, Thomas J, Pascoe M, Dheda K. Comparison of two methods for acquisition of sputum samples for diagnosis of suspected tuberculosis in smear‐negative or sputum‐scarce people: a randomised controlled trial. Lancet. 2013; 1: 471 – 478.
dc.identifier.citedreferenceAl Zahrani K, Al Jahdali H, Poirier L, Rene P, Menzies D. Yield of smear, culture and amplification tests from repeated sputum induction for the diagnosis of pulmonary tuberculosis. Int J Tuberc Lung Dis. 2001; 5: 855 – 860.
dc.identifier.citedreferenceChang KC, Leung CC, Yew WW, Tam CM. Supervised and induced sputum among patients with smear‐negative pulmonary tuberculosis. Eur Respir J. 2008; 31: 1085 – 1090.
dc.identifier.citedreferenceSouza Pinto V, Bammann RH. Chest physiotherapy for collecting sputum samples from HIV‐positive patients suspected of having tuberculosis. Int J Tuberc Lung Dis. 2007; 11: 1302 – 1307.
dc.identifier.citedreferenceEfthimiadis A, Jayaram L, Weston S, Carruthers S, Hargreave FE. Induced sputum: time from expectoration to processing. Eur Respir J. 2002; 19: 706 – 708.
dc.identifier.citedreferenceMalekmohammad M, Marjani M, Tabarsi P, et al. Diagnostic yield of post‐bronchoscopy sputum smear in pulmonary tuberculosis. Scand J Infect Dis. 2012; 44: 369 – 373.
dc.identifier.citedreferenceGeorge PM, Mehta M, Dhariwal J, et al. Post‐bronchoscopy sputum: improving the diagnostic yield in smear negative pulmonary TB. Respir Med. 2011; 105: 1726 – 1731.
dc.identifier.citedreferenceAderaye G, GE H, Aseffa A, Worku A, Lindquist L. Comparison of acid‐fast stain and culture for Mycobacterium tuberculosis in pre‐ and post‐bronchoscopy sputum and bronchoalveolar lavage in HIV‐infected patients with atypical chest X‐ray in Ethiopia. Ann Thorac Med. 2007; 2: 154 – 157. Oct
dc.identifier.citedreferenceLim GH, Ross P, Landman S. Bronchial brush biopsy and primary lung carcinoma. Med J Aust. 1975; 2: 207 – 210.
dc.identifier.citedreferenceZavala DC, Richardson RH, Mukerjee PK, Rossi NP, Bedell GN. Use of the bronchofiberscope for bronchial brush biopsy. Diagnostic results and comparison with other brushing techniques. Chest. 1973; 63: 889 – 892.
dc.identifier.citedreferenceSato M, Saito Y, Nagamoto N, et al. Diagnostic value of differential brushing of all branches of the bronchi in patients with sputum positive or suspected positive for lung cancer. Acta Cytol. 1993; 37: 879 – 883.
dc.identifier.citedreferenceMeyer KC, Raghu G, Baughman RP, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012; 185: 1004 – 1014.
dc.identifier.citedreferenceOrholm M, Lundgren JD, Nielsen TL, Iversen J. Indication for fiberoptic bronchoscopy in HIV‐infected patients suspected for Pneumocystis carinii pneumonia. Danish Med Bull. 1990; 37: 86 – 89. Feb
dc.identifier.citedreferenceTechnical recommendations and guidelines for bronchoalveolar lavage (BAL). Report of the European Society of Pneumology Task Group. Eur RespirJ. 1989; 2 ( 6 ): 561 – 585.
dc.identifier.citedreferenceRadhakrishna N, Farmer M, Steinfort DP, King P. A comparison of techniques for optimal performance of bronchoalveolar lavage. J Bronchol Interv Pulmonol. 2015; 22: 300 – 305.
dc.identifier.citedreferenceIzumo T, Sasada S, Chavez C, Matsumoto Y, Hayama M, Tsuchida T. The diagnostic value of histology and cytology samples during endobronchial ultrasound with a guide sheath. Jpn J Clin Oncol. 2015; 45: 362 – 366.
dc.identifier.citedreferenceMeyer KC, Raghu G. Bronchoalveolar lavage for the evaluation of interstitial lung disease: is it clinically useful?. Eur Respir J. 2011; 38: 761 – 769.
dc.identifier.citedreferenceBaughman RP. Technical aspects of bronchoalveolar lavage: recommendations for a standard procedure. Semin Respir Crit Care Med. 2007; 28: 475 – 485.
dc.identifier.citedreferenceHurter T, Hanrath P. Endobronchial sonography: feasibility and preliminary results. Thorax. 1992; 47: 565 – 567.
dc.identifier.citedreferenceKurimoto N, Murayama M, Yoshioka S, Nishisaka T, Inai K, Dohi K. Assessment of usefulness of endobronchial ultrasonography in determination of depth of tracheobronchial tumor invasion. Chest. 1999; 115: 1500 – 1506.
dc.identifier.citedreferenceYasufuku K, Chiyo M, Koh E, et al. Endobronchial ultrasound guided transbronchial needle aspiration for staging of lung cancer. Lung Cancer. 2005; 50: 347 – 354.
dc.identifier.citedreferenceBerania I, Kazakov J, Khereba M, et al. Endoscopic mediastinal staging in lung cancer is superior to “gold standard” surgical staging. Ann Thorac Surg. 2016; 101: 547 – 550.
dc.identifier.citedreferenceEberhardt R, Kahn N, Gompelmann D, Schumann M, Heussel CP, Herth FJ. Lung point—a new approach to peripheral lesions. J Thorac Oncol. 2010; 5: 1559 – 1563.
dc.identifier.citedreferenceZhang W, Chen S, Dong X, Lei P. Meta‐analysis of the diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules. J Thorac Dis. 2015; 7: 799 – 809.
dc.identifier.citedreferenceChen A, Chenna P, Loiselle A, Massoni J, Mayse M, Misselhorn D. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5‐year institutional experience. Ann Am Thorac Soc. 2014; 11: 578 – 582.
dc.identifier.citedreferenceCerfolio RJ, Bryant AS, Eloubeidi MA. Accessing the aortopulmonary window (#5) and the paraaortic (#6) lymph nodes in patients with non‐small cell lung cancer. Ann Thorac Surg. 2007; 84: 940 – 945.
dc.identifier.citedreferenceDhooria S, Aggarwal AN, Gupta D, Behera D, Agarwal R. Utility and safety of endoscopic ultrasound with bronchoscope‐guided fine‐needle aspiration in mediastinal lymph node sampling: systematic review and meta‐analysis. Respir Care. 2015; 60: 1040 – 1050.
dc.identifier.citedreferenceEdey AJ, Pollentine A, Doody C, Medford AR. Differentiating benign from malignant mediastinal lymph nodes visible at EBUS using grey‐scale textural analysis. Respirology. 2015; 20: 453 – 458.
dc.identifier.citedreferenceFujiwara T, Yasufuku K, Nakajima T, et al. The utility of sonographic features during endobronchial ultrasound‐guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: a standard endobronchial ultrasound image classification system. Chest. 2010; 138: 641 – 647.
dc.identifier.citedreferenceGupta NC, Tamim WJ, Graeber GG, Bishop HA, Hobbs GR. Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest. 2001; 120: 521 – 527.
dc.identifier.citedreferenceLi S, Zheng Q, Ma Y, et al. Implications of false negative and false positive diagnosis in lymph node staging of NSCLC by means of (1)(8)F‐FDG PET/CT. PloS One. 2013; 8: e78552.
dc.identifier.citedreferenceDiacon AH, Schuurmans MM, Theron J, et al. Transbronchial needle aspirates: how many passes per target site?. Eur Respir J. 2006; 29: 112 – 116.
dc.identifier.citedreferenceKinsey CM, Arenberg DA. Endobronchial ultrasound‐guided transbronchial needle aspiration for non‐small cell lung cancer staging. Am J Respir Crit Care Med. 2014; 189: 640 – 649.
dc.identifier.citedreferenceYarmus L, Akulian J, Gilbert C, et al. Optimizing endobronchial ultrasound for molecular analysis. How many passes are needed?. Ann Am Thorac Soc. 2013; 10: 636 – 643.
dc.identifier.citedreferenceOki M, Saka H, Kitagawa C, et al. Randomized study of 21‐gauge versus 22‐gauge endobronchial ultrasound‐guided transbronchial needle aspiration needles for sampling histology specimens. J Bronchol Interv Pulmonol. 2011; 18: 306 – 310.
dc.identifier.citedreferenceSaji J, Kurimoto N, Morita K, et al. Comparison of 21‐gauge and 22‐gauge needles for endobronchial ultrasound‐guided transbronchial needle aspiration of mediastinal and hilar lymph nodes. J Bronchol Interv Pulmonol. 2011; 18: 239 – 246.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.