Show simple item record

Statistical Characteristics of Polar Cap Patches Observed by RISR‐C

dc.contributor.authorRen, Jiaen
dc.contributor.authorZou, Shasha
dc.contributor.authorGillies, Robert G.
dc.contributor.authorDonovan, Eric
dc.contributor.authorVarney, Roger H.
dc.date.accessioned2018-11-20T15:36:29Z
dc.date.available2019-10-01T16:02:11Zen
dc.date.issued2018-08
dc.identifier.citationRen, Jiaen; Zou, Shasha; Gillies, Robert G.; Donovan, Eric; Varney, Roger H. (2018). "Statistical Characteristics of Polar Cap Patches Observed by RISR‐C." Journal of Geophysical Research: Space Physics 123(8): 6981-6995.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/146513
dc.description.abstractPolar cap “patches” are ~100 to 1,000 km islands of high‐density plasma at polar latitudes, which can cause scintillation to communication and navigation signals. An automatic algorithm for patch identification has been developed and applied to the observations from the Resolute Bay Incoherent Scatter Radar‐Canada during January to March and September to December, 2016. Four hundred thirty‐seven patches have been identified, and their statistical characteristics have been studied, including their occurrence rate as a function of magnetic local time (MLT) and statistical profiles of plasma parameters at different MLT sectors. About 60% of the patches are observed between 1200 and 2400 MLT, consistent with earlier observations near this latitude (~82° MLat) using different instruments. Superposed epoch analysis has been used to study the vertical profiles of electron density and temperature, ion temperature, vertical velocity, and flux measured within the patches where the density peaks. The patch median density is higher than the sector median with a ratio of ~1.8–2.1 at the altitude of F‐region density peak. Meanwhile, the patch electron temperature is typically lower than the sector median between ~200 and 450 km with the largest difference near noon (~380 K). In contrast, the ion temperature profile of the patches does not show obvious differences except in the noon sector, where the ion temperature is about 150 K higher than the sector median at ~360 km. Additionally, downward ion fluxes with peak exceeding ~1013 m−2 s−1 are found in the patches between ~200 and 400 km at all MLT sectors.Key PointsAn automatic algorithm was developed to identify polar cap patches observed by the Resolute Bay Incoherent Scatter Radar‐CanadaA peak of patch occurrence is found between 14 and 19 magnetic local time at Resolute BayTypical plasma characteristics within the patches include high density, low electron temperature, and downward ion fluxes
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.titleStatistical Characteristics of Polar Cap Patches Observed by RISR‐C
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146513/1/jgra54469_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146513/2/jgra54469.pdf
dc.identifier.doi10.1029/2018JA025621
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSojka, J. J., Raitt, W. J., & Schunk, R. W. ( 1979 ). Effect of displaced geomagnetic and geographic poles on high‐latitude plasma convection and ionospheric depletions. Journal of Geophysical Research, 84 ( A10 ), 5943 – 5951. https://doi.org/10.1029/JA084iA10p05943
dc.identifier.citedreferenceNoja, M., Stolle, C., Park, J., & Lühr, H. ( 2013 ). Long‐term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Science, 48, 289 – 301. https://doi.org/10.1002/rds.20033
dc.identifier.citedreferencePerry, G. W. ( 2015 ). Large scale plasma density perturbations in the polar F‐region ionosphere, (Doctoral dissertation). Retrieved from eCommons. ( http://hdl.handle.net/10388/ETD‐2015‐02‐1947 ). Saskatoon: University of Saskatchewan.
dc.identifier.citedreferenceRodger, A. S., Pinnock, M., Dudeney, J. R., Baker, K. B., & Greenwald, R. A. ( 1994 ). A new mechanism for polar patch formation. Journal of Geophysical Research, 99 ( A4 ), 6425 – 6436. https://doi.org/10.1029/93JA01501
dc.identifier.citedreferenceRuohoniemi, J. M., & Greenwald, R. A. ( 1996 ). Statistical patterns of high‐latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 101 ( A10 ), 21,743 – 21,763. https://doi.org/10.1029/96JA01584
dc.identifier.citedreferenceRuohoniemi, J. M., & Greenwald, R. A. ( 2005 ). Dependencies of high‐latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. Journal of Geophysical Research, 110, A09204. https://doi.org/10.1029/2004JA010815
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511635342
dc.identifier.citedreferenceSojka, J. J., Bowline, M. D., & Schunk, R. W. ( 1994 ). Patches in the polar ionosphere: UT and seasonal dependence. Journal of Geophysical Research, 99 ( A8 ), 14,959 – 14,970. https://doi.org/10.1029/93JA03327
dc.identifier.citedreferenceSojka, J. J., Bowline, M. D., Schunk, R. W., Decker, D. T., Valladares, C. E., Sheehan, R., et al. ( 1993 ). Modeling polar cap F‐region patches using time varying convection. Geophysical Research Letters, 20 ( 17 ), 1783 – 1786. https://doi.org/10.1029/93GL01347
dc.identifier.citedreferenceSpicher, A., Clausen, L. B. N., Miloch, W. J., Lofstad, V., Jin, Y., & Moen, J. I. ( 2017 ). Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. Journal of Geophysical Research: Space Physics, 122, 3837 – 3851. https://doi.org/10.1002/2016JA023750
dc.identifier.citedreferenceTanaka, T. ( 2001 ). Interplanetary magnetic field B y and auroral conductance effects on high‐latitude ionospheric convection patterns. Journal of Geophysical Research, 106 ( A11 ), 24,505 – 24,516. https://doi.org/10.1029/2001JA900061
dc.identifier.citedreferenceTsunoda, R. T. ( 1988 ). High‐latitude F region irregularities: A review and synthesis. Reviews of Geophysics, 26 ( 4 ), 719 – 760. https://doi.org/10.1029/RG026i004p00719
dc.identifier.citedreferenceWang, B., Nishimura, Y., Lyons, L. R., Zou, Y., Carlson, H. C., Frey, H. U., & Mende, S. B. ( 2016 ). Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all‐sky imager and DMSP. Earth, Planets and Space, 68 ( 1 ), 150. https://doi.org/10.1186/s40623‐016‐0524‐z
dc.identifier.citedreferenceWeber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingston, R. C., Winningham, J. D., & Reinisch, B. W. ( 1984 ). F layer ionization patches in the polar cap. Journal of Geophysical Research, 89, 1683 – 1694. https://doi.org/10.1029/JA089iA03p01683
dc.identifier.citedreferenceWu, Q., Jee, G., Lee, C., Kim, J.‐H., Kim, Y. H., Ward, W., & Varney, R. H. ( 2017 ). First simultaneous multistation observations of the polar cap thermospheric winds. Journal of Geophysical Research: Space Physics, 122, 907 – 915. https://doi.org/10.1002/2016JA023560
dc.identifier.citedreferenceZhang, Q.‐H., Zhang, B. C., Liu, R. Y., Dunlop, M. W., Lockwood, M., Moen, J., et al. ( 2011 ). On the importance of interplanetary magnetic field ∣B y ∣ on polar cap patch formation. Journal of Geophysical Research, 116, A05308. https://doi.org/10.1029/2010JA016287
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow. Journal of Geophysical Research: Space Physics, 119, 8543 – 8559. https://doi.org/10.1002/2014JA020408
dc.identifier.citedreferenceZou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118, 7798 – 7809. https://doi.org/10.1002/2013JA018860
dc.identifier.citedreferenceZou, Y., Nishimura, Y., Lyons, L. R., Shiokawa, K., Donovan, E. F., Ruohoniemi, J. M., et al. ( 2015 ). Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection. Journal of Geophysical Research: Space Physics, 120, 4064 – 4078. https://doi.org/10.1002/2014JA020946
dc.identifier.citedreferenceAnderson, D. N., Buchau, J., & Heelis, R. A. ( 1988 ). Origin of density enhancements in the winter polar cap ionosphere. Radio Science, 23 ( 4 ), 513 – 519. https://doi.org/10.1029/RS023i004p00513
dc.identifier.citedreferenceAtkinson, G., & Hutchison, D. ( 1978 ). Effect of the day night ionospheric conductivity gradient on polar cap convective flow. Journal of Geophysical Research, 83 ( A2 ), 725 – 729. https://doi.org/10.1029/JA083iA02p00725
dc.identifier.citedreferenceBasu, S., MacKenzie, E., & Basu, S. ( 1988 ). Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Science, 23 ( 3 ), 363 – 378. https://doi.org/10.1029/RS023i003p00363
dc.identifier.citedreferenceBasu, S., MacKenzie, E., Costa, E., Fougere, P., Carlson, H., & Whitney, H. ( 1987 ). 250 MHz/GHz scintillation parameters in the equatorial, polar, and auroral environments. IEEE Journal on Selected Areas in Communications, 5 ( 2 ), 102 – 115. https://doi.org/10.1109/JSAC.1987.1146533
dc.identifier.citedreferenceCarlson, H. C. ( 2012 ). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Science, 47, RS0L21. https://doi.org/10.1029/2011RS004946
dc.identifier.citedreferenceCarlson, H. C., Moen, J., Oksavik, K., Nielsen, C., McCrea, I. W., Pedersen, T., & Gallop, P. ( 2006 ). Direct observations of injection events of subauroral plasma into the polar cap. Geophysical Research Letters, 33, L05103. https://doi.org/10.1029/2005GL025230
dc.identifier.citedreferenceColey, W. R., & Heelis, R. A. ( 1995 ). Adaptive identification and characterization of polar ionization patches. Journal of Geophysical Research, 100 ( A12 ), 23,819 – 23,827. https://doi.org/10.1029/95JA02700
dc.identifier.citedreferenceCrowley, G. ( 1996 ). Critical review of ionospheric patches and blobs. Review of Radio Science, 1993–1996, 619 – 648.
dc.identifier.citedreferenceDavid, M., Sojka, J. J., Schunk, R. W., & Coster, A. J. ( 2016 ). Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from 2009 to 2015. Geophysical Research Letters, 43, 2422 – 2428. https://doi.org/10.1002/2016GL068136
dc.identifier.citedreferenceFoster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 – 1689. https://doi.org/10.1029/92JA02032
dc.identifier.citedreferenceFoster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. ( 2005 ). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110, A09S31. https://doi.org/10.1029/2004JA010928
dc.identifier.citedreferenceGillies, R. G., van Eyken, A., Spanswick, E., Nicolls, M. J., Kelly, J., Greffen, M., et al. ( 2016 ). First observations from the RISR‐C incoherent scatter radar. Radio Science, 51, 1645 – 1659. https://doi.org/10.1002/2016RS006062
dc.identifier.citedreferenceHeelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. ( 2009 ). Storm time density enhancements in the middle‐latitude dayside ionosphere. Journal of Geophysical Research, 114, A03315. https://doi.org/10.1029/2008JA013690
dc.identifier.citedreferenceHosokawa, K., Kashimoto, T., Suzuki, S., Shiokawa, K., Otsuka, Y., & Ogawa, T. ( 2009 ). Motion of polar cap patches: A statistical study with all‐sky airglow imager at Resolute Bay, Canada. Journal of Geophysical Research, 114, A04318. https://doi.org/10.1029/2008JA014020
dc.identifier.citedreferenceLockwood, M., & Carlson, H. C. ( 1992 ). Production of polar cap electron density patches by transient magnetopause reconnection. Geophysical Research Letters, 19 ( 17 ), 1731 – 1734. https://doi.org/10.1029/92GL01993
dc.identifier.citedreferenceMcEwen, D. J., & Harris, D. P. ( 1996 ). Occurrence patterns of F layer patches over the north magnetic pole. Radio Science, 31 ( 3 ), 619 – 628. https://doi.org/10.1029/96RS00312
dc.identifier.citedreferenceMoen, J., Gulbrandsen, N., Lorentzen, D. A., & Carlson, H. C. ( 2007 ). On the MLT distribution of F region polar cap patches at night. Geophysical Research Letters, 34, L14113. https://doi.org/10.1029/2007GL029632
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.