Show simple item record

High‐Motility Visible Light‐Driven Ag/AgCl Janus Micromotors

dc.contributor.authorWang, Xu
dc.contributor.authorBaraban, Larysa
dc.contributor.authorNguyen, Anh
dc.contributor.authorGe, Jin
dc.contributor.authorMisko, Vyacheslav R.
dc.contributor.authorTempere, Jacques
dc.contributor.authorNori, Franco
dc.contributor.authorFormanek, Petr
dc.contributor.authorHuang, Tao
dc.contributor.authorCuniberti, Gianaurelio
dc.contributor.authorFassbender, Jürgen
dc.contributor.authorMakarov, Denys
dc.date.accessioned2018-12-06T17:36:06Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationWang, Xu; Baraban, Larysa; Nguyen, Anh; Ge, Jin; Misko, Vyacheslav R.; Tempere, Jacques; Nori, Franco; Formanek, Petr; Huang, Tao; Cuniberti, Gianaurelio; Fassbender, Jürgen ; Makarov, Denys (2018). "High‐Motility Visible Light‐Driven Ag/AgCl Janus Micromotors." Small 14(48): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/146560
dc.description.abstractVisible light‐driven nano/micromotors are promising candidates for biomedical and environmental applications. This study demonstrates blue light‐driven Ag/AgCl‐based spherical Janus micromotors, which couple plasmonic light absorption with the photochemical decomposition of AgCl. These micromotors reveal high motility in pure water, i.e., mean squared displacements (MSD) reaching 800 µm2 within 8 s, which is 100× higher compared to previous visible light‐driven Janus micromotors and 7× higher than reported ultraviolet (UV) light‐driven AgCl micromotors. In addition to providing design rules to realize efficient Janus micromotors, the complex dynamics revealed by individual and assemblies of Janus motors is investigated experimentally and in simulations. The effect of suppressed rotational diffusion is focused on, compared to UV light‐driven AgCl micromotors, as a reason for this remarkable increase of the MSD. Moreover, this study demonstrates the potential of using visible light‐driven plasmonic Ag/AgCl‐based Janus micromotors in human saliva, phosphate‐buffered saline solution, the most common isotonic buffer that mimics the environment of human body fluids, and Rhodamine B solution, which is a typical polluted dye for demonstrations of photocatalytic environmental remediation. This new knowledge is useful for designing visible light driven nano/micromotors based on the surface plasmon resonance effect and their applications in assays relevant for biomedical and ecological sciences.Ag/AgCl‐based spherical Janus motors are demonstrated to reveal efficient propulsion when illuminated by visible blue light due to the surface plasmon resonance effect. The design rules to realize efficient visible‐light‐driven Janus micromotors are provided. In addition to the experimental and theoretical study of their complex dynamics, possible applications with visible light in physiological fluids and environmental remediation are highlighted.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfuel‐free micromotors
dc.subject.otherplasmonic photoreaction
dc.subject.othervisible light
dc.subject.otheractive Janus particles
dc.titleHigh‐Motility Visible Light‐Driven Ag/AgCl Janus Micromotors
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146560/1/smll201803613-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146560/2/smll201803613.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146560/3/smll201803613_am.pdf
dc.identifier.doi10.1002/smll.201803613
dc.identifier.sourceSmall
dc.identifier.citedreferenceJ. Ge, X. Wang, H. B. Yao, H. W. Zhu, Y. C. Peng, S. H. Yu, Mater. Horiz. 2015, 2, 509.
dc.identifier.citedreferencea) Y. F. Tu, F. Peng, D. A. Wilson, Adv. Mater. 2017, 29, 1701970; b) L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Chem. Soc. Rev. 2017, 46, 6905.
dc.identifier.citedreferencea) H.‐R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 2010, 105, 268302; b) L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O. G. Schmidt, G. Cuniberti, ACS Nano 2013, 7, 1360; c) L. Helden, R. Eichhorn, C. Bechinger, Soft Matter 2015, 11, 2379.
dc.identifier.citedreferencea) R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, ACS Nano 2016, 10, 839; b) Z. Lin, T. Si, Z. Wu, C. Gao, X. Lin, Q. He, Angew. Chem., Int. Ed. 2017, 56, 13517; c) D. Zhou, L. Ren, Y. C. Li, P. Xu, Y. Gao, G. Zhang, W. Wang, T. E. Mallouk, L. Li, Chem. Commun. 2017, 53, 11465.
dc.identifier.citedreferencea) Z. Wu, X. Lin, Y. Wu, T. Si, J. Sun, Q. He, ACS Nano 2014, 8, 6097; b) J. Shao, M. Xuan, L. Dai, T. Si, J. Li, Q. He, Angew. Chem., Int. Ed. 2015, 54, 12782; c) M. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, J. Am. Chem. Soc. 2016, 138, 6492.
dc.identifier.citedreferencea) M. Ibele, T. E. Mallouk, A. Sen, Angew. Chem., Int. Ed. 2009, 48, 3308; b) Y. Hong, M. Diaz, U. M. Córdova‐Figueroa, A. Sen, Adv. Funct. Mater. 2010, 20, 1568; c) B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C. C. Li, S. P. Feng, J. Tang, Nat. Nanotechnol. 2016, 11, 1087; d) C. Chen, F. Mou, L. Xu, S. Wang, J. Guan, Z. Feng, Q. Wang, L. Kong, W. Li, J. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1603374; e) R. Dong, C. Wang, Q. Wang, A. Pei, X. She, Y. Zhang, Y. Cai, Nanoscale 2017, 9, 15027; f) D. P. Singh, U. Choudhury, P. Fischer, A. G. Mark, Adv. Mater. 2017, 29, 1701328.
dc.identifier.citedreferenceK. König, Y. Tadir, P. Patrizio, M. W. Berns, B. J. Tromberg, Hum. Reprod. 1996, 11, 2162.
dc.identifier.citedreferenceX. Wang, V. Sridhar, S. Guo, N. Talebi, A. Miguel‐López, K. Hahn, P. A. van Aken, S. Sánchez, Adv. Funct. Mater. 2018, 28, 1705862.
dc.identifier.citedreferencea) J. Wang, Z. Xiong, X. Zhan, B. Dai, J. Zheng, J. Liu, J. Tang, Adv. Mater. 2017, 29, 1701451; b) D. Zhou, Y. C. Li, P. Xu, N. S. McCool, L. Li, W. Wang, T. E. Mallouk, Nanoscale 2017, 9, 75.
dc.identifier.citedreferenceR. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, J. Am. Chem. Soc. 2017, 139, 1722.
dc.identifier.citedreferenceD. Zhou, Y. C. Li, P. Xu, L. Ren, G. Zhang, T. E. Mallouk, L. Li, Nanoscale 2017, 9, 11434.
dc.identifier.citedreferencea) P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M. H. Whangbo, Angew. Chem., Int. Ed. 2008, 47, 7931; b) C. Zhou, H. P. Zhang, J. Y. Tang, W. Wang, Langmuir 2018, 34, 3289.
dc.identifier.citedreferenceM. E. Ibele, P. E. Lammert, V. H. Crespi, A. Sen, ACS Nano 2010, 4, 4845.
dc.identifier.citedreferenceJ. Simmchen, A. Baeza, A. Miguel‐Lopez, M. M. Stanton, M. Vallet‐Regi, D. Ruiz‐Molina, S. Sanchez, ChemNanoMat 2017, 3, 65.
dc.identifier.citedreferenceA. Altemose, M. A. Sanchez‐Farran, W. Duan, S. Schulz, A. Borhan, V. H. Crespi, A. Sen, Angew. Chem., Int. Ed. 2017, 56, 7817.
dc.identifier.citedreferencea) W. Hou, S. B. Cronin, Adv. Funct. Mater. 2013, 23, 1612; b) Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, M. Y. Han, Adv. Mater. 2012, 24, 2310; c) K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 2008, 130, 1676; d) Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S. B. Cronin, Nano Lett. 2011, 11, 1111; e) S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911; f) Y. X. Tang, Z. L. Jiang, G. C. Xing, A. R. Li, P. D. Kanhere, Y. Y. Zhang, T. C. Sum, S. Z. Li, X. D. Chen, Z. L. Dong, Z. Chen, Adv. Funct. Mater. 2013, 23, 2932.
dc.identifier.citedreferencea) Y. Fily, M. C. Marchetti, Phys. Rev. Lett. 2012, 108, 235702; b) P. K. Ghosh, V. R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 2013, 110, 268301; c) D. Takagi, A. B. Braunschweig, J. Zhang, M. J. Shelley, Phys. Rev. Lett. 2013, 110, 038301; d) H. Yu, A. Kopach, V. R. Misko, A. A. Vasylenko, D. Makarov, F. Marchesoni, F. Nori, L. Baraban, G. Cuniberti, Small 2016, 12, 5882.
dc.identifier.citedreferenceS. Glaus, G. Calzaferri, Photochem. Photobiol. Sci. 2003, 2, 398.
dc.identifier.citedreferencea) C. An, S. Peng, Y. Sun, Adv. Mater. 2010, 22, 2570; b) Y. Bi, J. Ye, Chem. Commun. 2009, 6551; c) P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Chem. ‐ Eur. J. 2010, 16, 538; d) T. B. Devi, S. Begum, M. Ahmaruzzaman, J. Photochem. Photobiol., B 2016, 160, 260; e) Y. Qin, Y. Cui, Z. Tian, Y. Wu, Y. Li, Nanoscale Res. Lett. 2017, 12, 247.
dc.identifier.citedreferencea) W. Wang, W. Duan, S. Ahmed, A. Sen, T. E. Mallouk, Acc. Chem. Res. 2015, 48, 1938; b) D. Velegol, A. Garg, R. Guha, A. Kar, M. Kumar, Soft Matter 2016, 12, 4686.
dc.identifier.citedreferenceS. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, ACS Appl. Mater. Interfaces 2014, 6, 22116.
dc.identifier.citedreferenceG. Calzaferri, Catal. Today 1997, 39, 145.
dc.identifier.citedreferencea) M. J. Saxton, Biophys. J. 1997, 72, 1744; b) O. Chiarelli‐Neto, A. S. Ferreira, W. K. Martins, C. Pavani, D. Severino, F. Faiao‐Flores, S. S. Maria‐Engler, E. Aliprandini, G. R. Martinez, P. Di Mascio, M. H. Medeiros, M. S. Baptista, PLoS One 2014, 9, e113266.
dc.identifier.citedreferenceG. Volpe, S. Gigan, G. Volpe, Am. J. Phys. 2014, 82, 659.
dc.identifier.citedreferenceJ. Zheng, B. Dai, J. Wang, Z. Xiong, Y. Yang, J. Liu, X. Zhan, Z. Wan, J. Tang, Nat. Commun. 2017, 8, 1438.
dc.identifier.citedreferencea) W. Duan, R. Liu, A. Sen, J. Am. Chem. Soc. 2013, 135, 1280; b) J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, Science 2013, 339, 936.
dc.identifier.citedreferenceA. T. Brown, W. C. K. Poon, C. Holm, J. de Graaf, Soft Matter 2017, 13, 1200.
dc.identifier.citedreferencea) M. Zhu, P. Chen, M. Liu, ACS Nano 2011, 5, 4529; b) H. Zhang, X. Fan, X. Quan, S. Chen, H. Yu, Environ. Sci. Technol. 2011, 45, 5731; c) Y. S. Yang, Y. Zhang, M. G. Dong, T. Yan, M. S. Zhang, Q. R. Zeng, J. Hazard. Mater. 2017, 335, 92.
dc.identifier.citedreferenceD. Vilela, M. M. Stanton, J. Parmar, S. Sanchez, ACS Appl. Mater. Interfaces 2017, 9, 22093.
dc.identifier.citedreferenceK. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, Nat. Methods 2008, 5, 695.
dc.identifier.citedreferencea) G. Dunderdale, S. Ebbens, P. Fairclough, J. Howse, Langmuir 2012, 28, 10997; b) L. Weimann, K. A. Ganzinger, J. McColl, K. L. Irvine, S. J. Davis, N. J. Gay, C. E. Bryant, D. Klenerman, PLoS One 2013, 8, e64287.
dc.identifier.citedreferenceE. Purcell, Am. J. Phys. 1977, 45, 3.
dc.identifier.citedreferencea) R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, Nature 2005, 437, 862; b) A. Ghosh, P. Fischer, Nano Lett. 2009, 9, 2243; c) B. Jang, E. Gutman, N. Stucki, B. F. Seitz, P. D. Wendel‐García, T. Newton, J. Pokki, O. Ergeneman, S. Pané, Y. Or, Nano Lett. 2015, 15, 4829; d) F. M. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, B. J. Nelson, Adv. Funct. Mater. 2015, 25, 1666; e) X. Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Ozkale, Q. Li, E. Siringil, F. Mushtaq, L. Di Tizio, B. J. Nelson, S. Pane, Adv. Mater. 2017, 29, 1605458; f) T. Li, J. Li, K. I. Morozov, Z. Wu, T. Xu, I. Rozen, A. M. Leshansky, L. Li, J. Wang, Nano Lett. 2017, 17, 5092; g) X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, Y.‐X. J. Wang, K. Kostarelos, L. Zhang, Sci. Rob. 2017, 2, eaaq1155.
dc.identifier.citedreferencea) J. Wang, ACS Nano 2009, 3, 4; b) S. Sengupta, M. E. Ibele, A. Sen, Angew. Chem., Int. Ed. 2012, 51, 8434; c) P. Illien, R. Golestanian, A. Sen, Chem. Soc. Rev. 2017, 46, 5508; d) J. L. Moran, J. D. Posner, Annu. Rev. Fluid Mech. 2017, 49, 511; e) J. Zhang, E. Luijten, B. A. Grzybowski, S. Granick, Chem. Soc. Rev. 2017, 46, 5551.
dc.identifier.citedreferencea) H. Wang, M. Pumera, Chem. Rev. 2015, 115, 8704; b) W. Gao, J. Wang, ACS Nano 2014, 8, 3170; c) M. Guix, C. C. Mayorga‐Martinez, A. Merkoçi, Chem. Rev. 2014, 114, 6285.
dc.identifier.citedreferencea) Z. Wu, Y. Wu, W. He, X. Lin, J. Sun, Q. He, Angew. Chem., Int. Ed. 2013, 52, 7000; b) W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, J. Wang, ACS Nano 2015, 9, 117; c) X. Ma, A. C. Hortelao, A. Miguel‐Lopez, S. Sanchez, J. Am. Chem. Soc. 2016, 138, 13782.
dc.identifier.citedreferencea) S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco‐Obregón, B. J. Nelson, Adv. Mater. 2012, 24, 811; b) D. Schamel, M. Pfeifer, J. G. Gibbs, B. Miksch, A. G. Mark, P. Fischer, J. Am. Chem. Soc. 2013, 135, 12353.
dc.identifier.citedreferencea) C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, R. Di Leonardo, Nat. Commun. 2015, 6, 7855; b) M. Yang, M. Ripoll, Soft Matter 2014, 10, 1006.
dc.identifier.citedreferencea) W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, J. Am. Chem. Soc. 2004, 126, 13424; b) S. Sattayasamitsathit, W. Gao, P. Calvo‐Marzal, K. M. Manesh, J. Wang, ChemPhysChem 2010, 11, 2802.
dc.identifier.citedreferencea) L. Baraban, M. Tasinkevych, M. N. Popescu, S. Sanchez, S. Dietrich, O. G. Schmidt, Soft Matter 2012, 8, 48; b) W. Gao, A. Pei, R. Dong, J. Wang, J. Am. Chem. Soc. 2014, 136, 2276; c) X. Ma, K. Hahn, S. Sanchez, J. Am. Chem. Soc. 2015, 137, 4976; d) X. Ma, S. Jang, M. N. Popescu, W. E. Uspal, A. Miguel‐López, K. Hahn, D.‐P. Kim, S. Sánchez, ACS Nano 2016, 10, 8751; e) B. Jang, A. Hong, H. E. Kang, C. Alcantara, S. Charreyron, F. Mushtaq, E. Pellicer, R. Buchel, J. Sort, S. S. Lee, B. J. Nelson, S. Pane, ACS Nano 2017, 11, 6146; f) J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 2007, 99, 048102; g) L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O. G. Schmidt, ACS Nano 2012, 6, 3383; h) L. Baraban, D. Makarov, O. G. Schmidt, G. Cuniberti, P. Leiderer, A. Erbe, Nanoscale 2013, 5, 1332; i) L. Baraban, S. M. Harazim, S. Sánchez, O. G. Schmidt, Angew. Chem., Int. Ed. 2013, 52, 5552.
dc.identifier.citedreferenceJ. Katuri, X. Ma, M. M. Stanton, S. Sánchez, Acc. Chem. Res. 2017, 50, 2.
dc.identifier.citedreferencea) W. Gao, J. Wang, Nanoscale 2014, 6, 10486; b) J. Li, B. E.‐F. de Ávila, W. Gao, L. Zhang, J. Wang, Sci. Rob. 2017, 2, eaam6431; c) F. Peng, Y. Tu, D. A. Wilson, Chem. Soc. Rev. 2017, 46, 5289; d) W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, J. Am. Chem. Soc. 2011, 133, 11862.
dc.identifier.citedreferencea) A. A. Solovev, Y. Mei, E. Bermúdez Ureña, G. Huang, O. G. Schmidt, Small 2009, 5, 1688; b) H. Wang, G. Zhao, M. Pumera, J. Am. Chem. Soc. 2014, 136, 2719; c) J. Li, X. Yu, M. Xu, W. Liu, E. Sandraz, H. Lan, J. Wang, S. M. Cohen, J. Am. Chem. Soc. 2017, 139, 611.
dc.identifier.citedreferencea) W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, A. Sen, J. Am. Chem. Soc. 2006, 128, 14881; b) U. K. Demirok, R. Laocharoensuk, K. M. Manesh, J. Wang, Angew. Chem., Int. Ed. 2008, 47, 9349; c) R. Liu, A. Sen, J. Am. Chem. Soc. 2011, 133, 20064; d) F. Wong, A. Sen, ACS Nano 2016, 10, 7172.
dc.identifier.citedreferencea) W. Wang, L. A. Castro, M. Hoyos, T. E. Mallouk, ACS Nano 2012, 6, 6122; b) V. Garcia‐Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay, A. Pourazary, A. Katzenberg, W. Gao, Y. Shen, J. Wang, ACS Nano 2013, 7, 9232.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.