Show simple item record

A basic fibroblast growth factor slow‐release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model

dc.contributor.authorFukuda, Tomokazu
dc.contributor.authorKusuhara, Hirohisa
dc.contributor.authorNakagoshi, Takuya
dc.contributor.authorIsogai, Noritaka
dc.contributor.authorSueyoshi, Yu
dc.date.accessioned2018-12-06T17:36:17Z
dc.date.available2020-01-06T16:41:00Zen
dc.date.issued2018-11
dc.identifier.citationFukuda, Tomokazu; Kusuhara, Hirohisa; Nakagoshi, Takuya; Isogai, Noritaka; Sueyoshi, Yu (2018). "A basic fibroblast growth factor slow‐release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model." Microsurgery 38(8): 899-906.
dc.identifier.issn0738-1085
dc.identifier.issn1098-2752
dc.identifier.urihttps://hdl.handle.net/2027.42/146569
dc.publisherJohn Wiley & Sons, Inc.
dc.titleA basic fibroblast growth factor slow‐release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelSurgery and Anesthesiology
dc.subject.hlbsecondlevelNursing
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146569/1/micr30387.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146569/2/micr30387_am.pdf
dc.identifier.doi10.1002/micr.30387
dc.identifier.sourceMicrosurgery
dc.identifier.citedreferenceSuzuki, K., Kawauchi, A., Nakamura, T., Itoi, S., Ito, T., So, J., … Miki, T. ( 2009 ). Histologic and electrophysiological study of nerve regeneration using a polyglycolic acid‐collagen nerve conduit filled with collagen sponge in canine model. Urology, 74, 958 – 963.
dc.identifier.citedreferenceKusuhara, H., Itani, Y., Isogai, N., & Tabata, Y. ( 2011 ). Randomized controlled trial of the application of topical b‐FGF‐impregnated gelatin microspheres to improve tissue survival in subzone II fingertip amputations. The Journal of Hand Surgery, European Volume, 36, 455 – 460.
dc.identifier.citedreferenceLin, M. Y., Manzano, G., & Gupta, R. ( 2013 ). Nerve allografts and conduits in peripheral nerve repair. Hand Clinics, 29, 331 – 348.
dc.identifier.citedreferenceLundborg, G., & Hansson, H. A. ( 1979 ). Regeneration of peripheral nerve through a preformed tissue space. Preliminary observations on the reorganization of regenerating nerve fibres and perineurium. Brain Research, 178, 573 – 576.
dc.identifier.citedreferenceMa, F., Xiao, Z., Chen, B., Hou, X., Dai, J., & Xu, R. ( 2014 ). Linear ordered collagen scaffolds loaded with collagen‐binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats. Tissue Engineering. Part A, 20, 1253 – 1262.
dc.identifier.citedreferenceMeek, M. F., & Den Dunnen, W. F. ( 2009 ). Porosity of the wall of a neurolac nerve conduit hampers nerve regeneration. Microsurgery, 29, 473 – 478.
dc.identifier.citedreferenceMoore, A. M., Kasukurthi, R., Magill, C. K., Farhadi, H. F., Borschel, G. H., Mackinnon, S. E., … Mackinnon, S. E. ( 2009 ). Limitations of conduits in peripheral nerve repairs. Hand, 4, 180 – 186.
dc.identifier.citedreferenceRbia, N., & Shin, A. Y. ( 2017 ). The role of nerve graft substitutes in motor and mixed motor/sensory peripheral nerve injuries. Journal of Hand Surgery, 42, 367 – 377.
dc.identifier.citedreferenceRinker, B., & Liau, J. Y. ( 2011 ). A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps. Journal of Hand Surgery, 36, 775 – 781.
dc.identifier.citedreferenceSahakyants, T., Lee, J. Y., Friedrich, P. F., Bishop, A. T., & Shin, A. Y. ( 2013 ). Return of motor function after repair of a 3‐cm gap in a rabbit peroneal nerve: A comparison of autograft, collagen conduit, and conduit filled with collagen‐GAG matrix. The Journal of Bone and Joint Surgery. American Volume, 95, 1952 – 1958.
dc.identifier.citedreferenceSaller, M. M., Huettl, R. E., Mayer, J. M., Feuchtinger, A., Krug, C., Holzbach, T., & Volkmer, E. ( 2018 ). Validation of a novel animal model for sciatic nerve repair with an adipose‐derived stem cell loaded fibrin conduit. Neural Regeneration Research, 13, 854 – 861.
dc.identifier.citedreferenceSchlosshauer, B., Dreesmann, L., Schaller, H. E., & Sinis, N. ( 2006 ). Synthetic nerve guide implants in humans: A comprehensive survey. Neurosurgery, 59, 740 – 748.
dc.identifier.citedreferenceTabata, Y., Hijikata, S., & Ikada, Y. ( 1994 ). Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. Journal of Controlled Release, 31, 189 – 199.
dc.identifier.citedreferenceTabata, Y., Nagano, A., Muniruzzaman, M., & Ikada, Y. ( 1998 ). In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials, 19, 1781 – 1789.
dc.identifier.citedreferenceTassi, E., Al‐Attar, A., Aigner, A., Swift, M. R., McDonnell, K., Karavanov, A., & Wellstein, A. ( 2001 ). Enhancement of fibroblast growth factor (FGF) activity by an FGF‐binding protein. The Journal of Biological Chemistry, 276, 40247 – 40253.
dc.identifier.citedreferenceWang, J., Ding, F., Gu, Y., Liu, J., & Gu, X. ( 2009 ). Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Research, 1262, 7 – 15.
dc.identifier.citedreferenceWang, S., Cai, Q., Hou, J., Bei, J., Zhang, T., Yang, J., & Wan, Y. ( 2003 ). Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15‐mm gap. Journal of Biomedical Materials Research. Part A, 66, 522 – 531.
dc.identifier.citedreferenceWeber, R. A., Breidenbach, W. C., Brown, R. E., Jabaley, M. E., & Mass, D. P. ( 2000 ). A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plastic and Reconstructive Surgery, 106, 1036 – 1045.
dc.identifier.citedreferenceYang, Z., Cai, X., Xu, A., Xu, F., & Liang, Q. ( 2015 ). Bone marrow stromal cell transplantation through tail vein injection promotes angiogenesis and vascular endothelial growth factor expression in cerebral infarct area in rats. Cytotherapy, 17, 1200 – 1212.
dc.identifier.citedreferenceBlack, M. M., & Lasek, R. J. ( 1979 ). Slowing of the rate of axonal regeneration during growth and maturation. Experimental Neurology, 63, 108 – 119.
dc.identifier.citedreferenceBrooks, D. N., Weber, R. V., Chao, J. D., Rinker, B. D., Zoldos, J., Robichaux, M. R., … Buncke, G. M. ( 2012 ). Processed nerve allografts for peripheral nerve reconstruction: A multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery, 32, 1 – 14.
dc.identifier.citedreferenceCattin, A. L., Burden, J. J., Van Emmenis, L., Mackenzie, F. E., Hoving, J. J., Garcia Calavia, N., … Lloyd, A. C. ( 2015 ). Macrophage‐induced blood vessels guide Schwann cell‐mediated regeneration of peripheral nerves. Cell, 162, 1127 – 1139.
dc.identifier.citedreferenceDienstknecht, T., Klein, S., Vykoukal, J., Gehmert, S., Koller, M., Gosau, M., & Prantl, L. ( 2013 ). Type I collagen nerve conduits for median nerve repairs in the forearm. Journal of Hand Surgery, 38, 1119 – 1124.
dc.identifier.citedreferenceFarzamfar, S., Naseri‐Nosar, M., Ghanavatinejad, A., Vaez, A., Zarnani, A. H., & Salehi, M. ( 2017 ). Sciatic nerve regeneration by transplantation of menstrual blood‐derived stem cells. Molecular Biology Reports, 44, 407 – 412.
dc.identifier.citedreferenceGospodarowicz, D. ( 1991 ). Biological activities of fibroblast growth factors. Annals of the New York Academy of Sciences, 638, 1 – 8.
dc.identifier.citedreferenceHernández‐Cortés, P., Garrido, J., Cámara, M., & Ravassa, F. O. ( 2010 ). Failed digital nerve reconstruction by foreign body reaction to neurolac nerve conduit. Microsurgery, 30, 414 – 416.
dc.identifier.citedreferenceHöke, A. ( 2011 ). A (heat) shock to the system promotes peripheral nerve regeneration. The Journal of Clinical Investigation, 121, 4231 – 4234.
dc.identifier.citedreferenceIde, C., Tohyama, K., Tajima, K., Endoh, K., Sano, K., Tamura, M., … Shirasu, M. ( 1998 ). Long acellular nerve transplants for allogeneic grafting and the effects of basic fibroblast growth factor on the growth of regenerating axons in dogs: A preliminary report. Experimental Neurology, 154, 99 – 112.
dc.identifier.citedreferenceIijima, Y., Ajiki, T., Murayama, A., & Takeshita, K. ( 2016 ). Effect of artificial nerve conduit vascularization on peripheral nerve in a necrotic bed. Plastic and Reconstructive Surgery—Global Open, 4, e665.
dc.identifier.citedreferenceIsogai, N., Kamiishi, H., & Chichibu, S. ( 1988 ). Re‐endothelialization stages at the microvascular anastomosis. Microsurgery, 9, 87 – 94.
dc.identifier.citedreferenceJiang, X., Lim, S. H., Mao, H. Q., & Chew, S. Y. ( 2010 ). Current applications and future perspectives of artificial nerve conduits. Experimental Neurology, 223, 86 – 101.
dc.identifier.citedreferenceKaizawa, Y., Kakinoki, R., Ikeguchi, R., Ohta, S., Noguchi, T., Oda, H., & Matsuda, S. ( 2016 ). Bridging a 30 mm defect in the canine ulnar nerve using vessel‐containing conduits with implantation of bone marrow stromal cells. Microsurgery, 36, 316 – 324.
dc.identifier.citedreferenceKaizawa, Y., Kakinoki, R., Ikeguchi, R., Ohta, S., Noguchi, T., Takeuchi, H., … Matsuda, S. ( 2017 ). A nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix. Cell Transplantation, 26, 215 – 228.
dc.identifier.citedreferenceKakinoki, R., Nishijima, N., Ueba, Y., Oka, M., Yamamuro, T., & Nakamura, T. ( 1997 ). Nerve regeneration over a 25 mm gap in rat sciatic nerves using tubes containing blood vessels: The possibility of clinical application. International Orthopaedics, 21, 332 – 336.
dc.identifier.citedreferenceKappos, E. A., Engels, P. E., Tremp, M., Meyer zu Schwabedissen, M., di Summa, P., Fischmann, A., … Kalbermatten, D. F. ( 2015 ). Peripheral nerve repair: Multimodal comparison of the long‐term regenerative potential of adipose tissue‐derived cells in a biodegradable conduit. Stem Cells and Development, 24, 2127 – 2141.
dc.identifier.citedreferenceKoshima, I., & Harii, K. ( 1985 ). Experimental study of vascularized nerve grafts: Multifactorial analyses of axonal regeneration of nerves transplanted into an acute burn wound. Journal of Hand Surgery, 10, 64 – 72.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.