Show simple item record

Combinatorial lentiviral gene delivery of pro‐oligodendrogenic factors for improving myelination of regenerating axons after spinal cord injury

dc.contributor.authorSmith, Dominique R.
dc.contributor.authorMargul, Daniel J.
dc.contributor.authorDumont, Courtney M.
dc.contributor.authorCarlson, Mitchell A.
dc.contributor.authorMunsell, Mary K.
dc.contributor.authorJohnson, Mitchell
dc.contributor.authorCummings, Brian J.
dc.contributor.authorAnderson, Aileen J.
dc.contributor.authorShea, Lonnie D.
dc.date.accessioned2018-12-06T17:36:24Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019-01
dc.identifier.citationSmith, Dominique R.; Margul, Daniel J.; Dumont, Courtney M.; Carlson, Mitchell A.; Munsell, Mary K.; Johnson, Mitchell; Cummings, Brian J.; Anderson, Aileen J.; Shea, Lonnie D. (2019). "Combinatorial lentiviral gene delivery of pro‐oligodendrogenic factors for improving myelination of regenerating axons after spinal cord injury." Biotechnology and Bioengineering 116(1): 155-167.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/146575
dc.description.abstractSpinal cord injury (SCI) results in paralysis below the injury and strategies are being developed that support axonal regrowth, yet recovery lags, in part, because many axons are not remyelinated. Herein, we investigated strategies to increase myelination of regenerating axons by overexpression of platelet‐derived growth factor (PDGF)‐AA and noggin either alone or in combination in a mouse SCI model. Noggin and PDGF‐AA have been identified as factors that enhance recruitment and differentiation of endogenous progenitors to promote myelination. Lentivirus encoding for these factors was delivered from a multichannel bridge, which we have previously shown creates a permissive environment and supports robust axonal growth through channels. The combination of noggin+PDGF enhanced total myelination of regenerating axons relative to either factor alone, and importantly, enhanced functional recovery relative to the control condition. The increase in myelination was consistent with an increase in oligodendrocyte‐derived myelin, which was also associated with a greater density of cells of an oligodendroglial lineage relative to each factor individually and control conditions. These results suggest enhanced myelination of regenerating axons by noggin+PDGF that act on oligodendrocyte‐lineage cells post‐SCI, which ultimately led to improved functional outcomes.Spinal cord injury (SCI) results in paralysis below the injury and strategies are being developed that support axonal regrowth, yet recovery lags, in part because many axons are not remyelinated. Herein, we investigated strategies to increase myelination of regenerating axons by overexpression of platelet‐derived growth factor‐AA and noggin either alone or in combination in a mouse SCI model.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertissue engineering
dc.subject.otherspinal cord injury (SCI)
dc.subject.othermyelination
dc.subject.othergene therapy
dc.titleCombinatorial lentiviral gene delivery of pro‐oligodendrogenic factors for improving myelination of regenerating axons after spinal cord injury
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146575/1/bit26838_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146575/2/bit26838.pdf
dc.identifier.doi10.1002/bit.26838
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceSellers, D. L., Maris, D. O., & Horner, P. J. ( 2009 ). Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury. Journal of Neuroscience, 29 ( 20 ), 6722 – 6733. https://doi.org/10.1523/jneurosci.4538‐08.2009
dc.identifier.citedreferenceMi, S., Miller, R. H., Tang, W., Lee, X., Hu, B., Wu, W., … Pepinsky, B. ( 2009 ). Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Annals of Neurology, 65 ( 3 ), 304 – 315. https://doi.org/10.1002/ana.21581
dc.identifier.citedreferenceMilone, M. C., & O’Doherty, U. ( 2018 ). Clinical use of lentiviral vectors. Leukemia, 32 ( 7 ), 1529 – 1541. https://doi.org/10.1038/s41375‐018‐0106‐0
dc.identifier.citedreferenceMiron, V. E., Kuhlmann, T., & Antel, J. P. ( 2011 ). Cells of the oligodendroglial lineage, myelination, and remyelination. Biochimica et Biophysica Acta, 1812 ( 2 ), 184 – 193. https://doi.org/10.1016/j.bbadis.2010.09.010
dc.identifier.citedreferenceNishiyama, A., Komitova, M., Suzuki, R., & Zhu, X. ( 2009 ). Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity. Nature Reviews Neuroscience, 10 ( 1 ), 9 – 22. https://doi.org/10.1038/nrn2495
dc.identifier.citedreferencePawar, K., Cummings, B. J., Thomas, A., Shea, L. D., Levine, A., Pfaff, S., & Anderson, A. J. ( 2015 ). Biomaterial bridges enable regeneration and re‐entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. Biomaterials, 65, 1 – 12. https://doi.org/10.1016/j.biomaterials.2015.05.032
dc.identifier.citedreferencePearse, D. D., & Barakat, D. J. ( 2006 ). Cellular repair strategies for spinal cord injury. Expert Opinion on Biological Therapy, 6 ( 7 ), 639 – 652. https://doi.org/10.1517/14712598.6.7.639
dc.identifier.citedreferencePowers, B. E., Lasiene, J., Plemel, J. R., Shupe, L., Perlmutter, S. I., Tetzlaff, W., & Horner, P. J. ( 2012 ). Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats. The Journal of Neuroscience, 32 ( 15 ), 5120 – 5125. https://doi.org/10.1523/JNEUROSCI.0002‐12.2012
dc.identifier.citedreferencePowers, B. E., Sellers, D. L., Lovelett, E. A., Cheung, W., Aalami, S. P., Zapertov, N., … Horner, P. J. ( 2013 ). Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 10 ), 4075 – 4080. https://doi.org/10.1073/pnas.1210293110
dc.identifier.citedreferenceRibes, V., & Briscoe, J. ( 2009 ). Establishing and interpreting graded sonic hedgehog signaling during vertebrate neural tube patterning: The role of negative feedback. Cold Spring Harbor Perspectives in Biology, 1 ( 2 ), a002014. https://doi.org/10.1101/cshperspect.a002014
dc.identifier.citedreferenceRichardson, P. M., McGuinness, U. M., & Aguayo, A. J. ( 1980 ). Axons from CNS neurons regenerate into PNS grafts. Nature, 284 ( 5753 ), 264 – 265.
dc.identifier.citedreferenceRussell, L. N., & Lampe, K. J. ( 2017 ). Oligodendrocyte precursor cell viability, proliferation, and morphology is dependent on mesh size and storage modulus in 3D poly(ethylene glycol)‐based hydrogels. ACS Biomaterials Science & Engineering, 3 ( 12 ), 3459 – 3468. https://doi.org/10.1021/acsbiomaterials.7b00374
dc.identifier.citedreferenceSabelström, H., Stenudd, M., & Frisén, J. ( 2014 ). Neural stem cells in the adult spinal cord. Experimental Neurology, 260, 44 – 49. https://doi.org/10.1016/j.expneurol.2013.01.026
dc.identifier.citedreferenceSabo, J. K., Aumann, T. D., Merlo, D., Kilpatrick, T. J., & Cate, H. S. ( 2011 ). Remyelination is altered by bone morphogenic protein signaling in demyelinated lesions. Journal of Neuroscience, 31 ( 12 ), 4504 – 4510. https://doi.org/10.1523/jneurosci.5859‐10.2011
dc.identifier.citedreferenceSchmidt, C. E., & Leach, J. B. ( 2003 ). Neural tissue engineering: Strategies for repair and regeneration. Annual Review of Biomedical Engineering, 5, 293 – 347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731
dc.identifier.citedreferenceSchwab, M. E. ( 2002 ). Repairing the injured spinal cord. Science, 295 ( 5557 ), 1029 – 1031. https://doi.org/10.1126/science.1067840
dc.identifier.citedreferenceTan, B. T., Jiang, L., Liu, L., Yin, Y., Luo, Z. R. X., Long, Z. Y., … Liu, Y. ( 2017 ). Local injection of Lenti‐Olig2 at lesion site promotes functional recovery of spinal cord injury in rats. CNS Neuroscience & Therapeutics, 23 ( 6 ), 475 – 487. https://doi.org/10.1111/cns.12694
dc.identifier.citedreferenceTetzlaff, W., Okon, E. B., Karimi‐Abdolrezaee, S., Hill, C. E., Sparling, J. S., Plemel, J. R., … Kwon, B. K. ( 2011 ). A systematic review of cellular transplantation therapies for spinal cord injury. Journal of Neurotrauma, 28 ( 8 ), 1611 – 1682. https://doi.org/10.1089/neu.2009.1177
dc.identifier.citedreferenceThomas, A. M., Kubilius, M. B., Holland, S. J., Seidlits, S. K., Boehler, R. M., Anderson, A. J., … Shea, L. D. ( 2013 ). Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury. Biomaterials, 34 ( 9 ), 2213 – 2220. https://doi.org/10.1016/j.biomaterials.2012.12.002
dc.identifier.citedreferenceThomas, A. M., Seidlits, S. K., Goodman, A. G., Kukushliev, T. V., Hassani, D. M., Cummings, B. J., … Shea, L. D. ( 2014 ). Sonic hedgehog and neurotrophin‐3 increase oligodendrocyte numbers and myelination after spinal cord injury. Integrative Biology, 6 ( 7 ), 694 – 705. https://doi.org/10.1039/c4ib00009a
dc.identifier.citedreferenceThomas, A. M., & Shea, L. D. ( 2013 ). Polysaccharide‐modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. Journal of Controlled Release, 170 ( 3 ), 421 – 429. https://doi.org/10.1016/j.jconrel.2013.06.013
dc.identifier.citedreferenceTuinstra, H. M., Aviles, M. O., Shin, S., Holland, S. J., Zelivyanskaya, M. L., Fast, A. G., … Shea, L. D. ( 2012 ). Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials, 33 ( 5 ), 1618 – 1626. https://doi.org/10.1016/j.biomaterials.2011.11.002
dc.identifier.citedreferenceTuinstra, H. M., Margul, D. J., Goodman, A. G., Boehler, R. M., Holland, S. J., Zelivyanskaya, M. L., … Shea, L. D. ( 2014 ). Long‐term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration. Tissue Engineering. Part A, 20 ( 5‐6 ), 1027 – 1037. https://doi.org/10.1089/ten.tea.2013.0111
dc.identifier.citedreferenceWalthers, C. M., & Seidlits, S. K. ( 2015 ). Gene delivery strategies to promote spinal cord repair. Biomarker insights, 10 ( Suppl 1 ), 11 – 29. https://doi.org/10.4137/BMI.S20063
dc.identifier.citedreferenceWang, Z., Colognato, H., & Ffrench‐Constant, C. ( 2007 ). Contrasting effects of mitogenic growth factors on myelination in neuron‐oligodendrocyte cocultures. Glia, 55 ( 5 ), 537 – 545. https://doi.org/10.1002/glia.20480
dc.identifier.citedreferenceWang, M., Zhai, P., Chen, X., Schreyer, D. J., Sun, X., & Cui, F. ( 2011 ). Bioengineered scaffolds for spinal cord repair. Tissue Engineering Part B: Reviews, 17 ( 3 ), 177 – 194. https://doi.org/10.1089/ten.teb.2010.0648
dc.identifier.citedreferenceWoodruff, R. H., Fruttiger, M., Richardson, W. D., & Franklin, R. J. M. ( 2004 ). Platelet‐derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Molecular and Cellular Neuroscience, 25 ( 2 ), 252 – 262. https://doi.org/10.1016/j.mcn.2003.10.014
dc.identifier.citedreferenceXiao, Q., Du, Y., Wu, W., & Yip, H. K. ( 2010 ). Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury. Experimental Neurology, 221 ( 2 ), 353 – 366. https://doi.org/10.1016/j.expneurol.2009.12.003
dc.identifier.citedreferenceXiao, Z., Tang, F., Tang, J., Yang, H., Zhao, Y., Chen, B., … Dai, J. ( 2016 ). One‐year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Science China Life Sciences, 59 ( 7 ), 647 – 655. https://doi.org/10.1007/s11427‐016‐5080‐z
dc.identifier.citedreferenceYang, Y., Laporte, L. D., Zelivyanskaya, M. L., Whittlesey, K. J., Anderson, A. J., Cummings, B. J., & Shea, L. D. ( 2009 ). Multiple channel bridges for spinal cord injury: Cellular characterization of host response. Tissue Engineering. Part A, 15 ( 11 ), 3283 – 3295. https://doi.org/10.1089/ten.TEA.2009.0081
dc.identifier.citedreferenceZhang, S., Huang, F., Gates, M., & Holmberg, E. G. ( 2013 ). Role of endogenous Schwann cells in tissue repair after spinal cord injury. Neural Regeneration Research, 8 ( 2 ), 177 – 185. https://doi.org/10.3969/j.issn.1673‐5374.2013.02.011
dc.identifier.citedreferenceZhang, H., Vutskits, L., Calaora, V., Durbec, P., & Kiss, J. Z. ( 2004 ). A role for the polysialic acid‐neural cell adhesion molecule in PDGF‐induced chemotaxis of oligodendrocyte precursor cells. Journal of Cell Science, 117 ( Pt 1 ), 93 – 103. https://doi.org/10.1242/jcs.00827
dc.identifier.citedreferenceZhou, X., Vink, M., Klaver, B., Berkhout, B., & Das, A. T. ( 2006 ). Optimization of the Tet‐On system for regulated gene expression through viral evolution. Gene Therapy, 13 ( 19 ), 1382 – 1390. https://doi.org/10.1038/sj.gt.3302780
dc.identifier.citedreferenceAbdellatif, A. A., Pelt, J. L., Benton, R. L., Howard, R. M., Tsoulfas, P., Ping, P., … Whittemore, S. R. ( 2006 ). Gene delivery to the spinal cord: Comparison between lentiviral, adenoviral, and retroviral vector delivery systems. Journal of Neuroscience Research, 84 ( 3 ), 553 – 567. https://doi.org/10.1002/jnr.20968
dc.identifier.citedreferenceAizawa, Y., Leipzig, N., Zahir, T., & Shoichet, M. ( 2008 ). The effect of immobilized platelet‐derived growth factor‐AA on neural stem/progenitor cell differentiation on cell‐adhesive hydrogels. Biomaterials, 29 ( 35 ), 4676 – 4683. https://doi.org/10.1016/j.biomaterials.2008.08.018
dc.identifier.citedreferenceAlizadeh, A., Dyck, S. M., Kataria, H., Shahriary, G. M., Nguyen, D. H., Santhosh, K. T., & Karimi‐Abdolrezaee, S. ( 2017 ). Neuregulin‐1 positively modulates glial response and improves neurological recovery following traumatic spinal cord injury. Glia, 65 ( 7 ), 1152 – 1175. https://doi.org/10.1002/glia.23150
dc.identifier.citedreferenceAlmad, A., Sahinkaya, F. R., & McTigue, D. M. ( 2011 ). Oligodendrocyte fate after spinal cord injury. Neurotherapeutics, 8 ( 2 ), 262 – 273. https://doi.org/10.1007/s13311‐011‐0033‐5
dc.identifier.citedreferenceAsakura, K., Hunter, S. F., & Rodriguez, M. ( 1997 ). Effects of transforming growth factor‐beta and platelet‐derived growth factor on oligodendrocyte precursors: Insights gained from a neuronal cell line. Journal of Neurochemistry, 68 ( 6 ), 2281 – 2290.
dc.identifier.citedreferenceBarateiro, A., & Fernandes, A. ( 2014 ). Temporal oligodendrocyte lineage progression: In vitro models of proliferation, differentiation and myelination. Biochimica et Biophysica Acta, 1843 ( 9 ), 1917 – 1929. https://doi.org/10.1016/j.bbamcr.2014.04.018
dc.identifier.citedreferenceBarnabé‐Heider, F., Göritz, C., Sabelström, H., Takebayashi, H., Pfrieger, F. W., Meletis, K., & Frisén, J. ( 2010 ). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, 7 ( 4 ), 470 – 482. https://doi.org/10.1016/j.stem.2010.07.014
dc.identifier.citedreferenceBasso, D. M., Fisher, L. C., Anderson, A. J., Jakeman, L. B., McTigue, D. M., & Popovich, P. G. ( 2006 ). Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma, 23 ( 5 ), 635 – 659. https://doi.org/10.1089/neu.2006.23.635
dc.identifier.citedreferenceBeattie, M. S., Hermann, G. E., Rogers, R. C., & Bresnahan, J. C. ( 2002 ). Cell death in models of spinal cord injury. Progress in Brain Research, 137, 37 – 47.
dc.identifier.citedreferenceBoulanger, J. J., & Messier, C. ( 2014 ). From precursors to myelinating oligodendrocytes: Contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience, 269, 343 – 366. https://doi.org/10.1016/j.neuroscience.2014.03.063
dc.identifier.citedreferenceBradl, M., & Lassmann, H. ( 2010 ). Oligodendrocytes: Biology and pathology. Acta Neuropathologica, 119 ( 1 ), 37 – 53. https://doi.org/10.1007/s00401‐009‐0601‐5
dc.identifier.citedreferenceBunge, M. B. ( 2001 ). Bridging areas of injury in the spinal cord. Neuroscientist, 7 ( 4 ), 325 – 339. https://doi.org/10.1177/107385840100700409
dc.identifier.citedreferenceButt, A. M., Hornby, M. F., Kirvell, S., & Berry, M. ( 1997 ). Platelet‐derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivo in the anterior medullary velum of the developing rat. Journal of Neuroscience Research, 48 ( 6 ), 588 – 596.
dc.identifier.citedreferenceCao, Q., He, Q., Wang, Y., Cheng, X., Howard, R. M., Zhang, Y., … Whittemore, S. R. ( 2010 ). Transplantation of ciliary neurotrophic factor‐expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. Journal of Neuroscience, 30 ( 8 ), 2989 – 3001. https://doi.org/10.1523/jneurosci.3174‐09.2010
dc.identifier.citedreferenceCasha, S., Yu, W. R., & Fehlings, M. G. ( 2001 ). Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience, 103 ( 1 ), 203 – 218.
dc.identifier.citedreferenceChen, B. K., Madigan, N. N., Hakim, J. S., Dadsetan, M., McMahon, S. S., Yaszemski, M. J., & Windebank, A. J. ( 2017 ). GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats. Journal of Tissue Engineering and Regenerative Medicine, 12 ( 1 ), e398 – e407.
dc.identifier.citedreferenceChen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E. C., Tallquist, M., Li, J., & Lu, Q. R. ( 2007 ). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nature Protocols, 2 ( 5 ), 1044 – 1051.
dc.identifier.citedreferenceChung, K., & Coggeshall, R. E. ( 1983a ). Numbers of axons in lateral and ventral funiculi of rat sacral spinal cord. The Journal of Comparative Neurology, 214 ( 1 ), 72 – 78. https://doi.org/10.1002/cne.902140107
dc.identifier.citedreferenceChung, K., & Coggeshall, R. E. ( 1983b ). Propriospinal fibers in the rat. The Journal of Comparative Neurology, 217 ( 1 ), 47 – 53. https://doi.org/10.1002/cne.902170105
dc.identifier.citedreferenceDelgado, A. C., Ferrón, S. R., Vicente, D., Porlan, E., Perez‐Villalba, A., Trujillo, C. M., … Fariñas, I. ( 2014 ). Endothelial NT‐3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron, 83 ( 3 ), 572 – 585. https://doi.org/10.1016/j.neuron.2014.06.015
dc.identifier.citedreferenceDeng, L. X., Deng, P., Ruan, Y., Xu, Z. C., Liu, N. K., Wen, X., … Xu, X. M. ( 2013 ). A novel growth‐promoting pathway formed by GDNF‐overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. Journal of Neuroscience, 33 ( 13 ), 5655 – 5667. https://doi.org/10.1523/jneurosci.2973‐12.2013
dc.identifier.citedreferenceDonnelly, D. J., & Popovich, P. G. ( 2008 ). Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 209 ( 2 ), 378 – 388. https://doi.org/10.1016/j.expneurol.2007.06.009
dc.identifier.citedreferenceDuncan, I. D., Brower, A., Kondo, Y., Curlee, J. F., & Schultz, R. D. ( 2009 ). Extensive remyelination of the CNS leads to functional recovery. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 16 ), 6832 – 6836. https://doi.org/10.1073/pnas.0812500106
dc.identifier.citedreferenceDuncan, I. D., Marik, R. L., Broman, A. T., & Heidari, M. ( 2017 ). Thin myelin sheaths as the hallmark of remyelination persist over time and preserve axon function. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 45 ), E9685 – E9691. https://doi.org/10.1073/pnas.1714183114
dc.identifier.citedreferenceEnzmann, G. U., Benton, R. L., Woock, J. P., Howard, R. M., Tsoulfas, P., & Whittemore, S. R. ( 2005 ). Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Experimental Neurology, 195 ( 2 ), 293 – 304. https://doi.org/10.1016/j.expneurol.2005.04.021
dc.identifier.citedreferenceFitch, M. T., & Silver, J. ( 2008 ). CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental Neurology, 209 ( 2 ), 294 – 301. https://doi.org/S0014‐4886(07)00213‐0. [pii] 10.1016/j.expneurol.2007.05.014
dc.identifier.citedreferenceFortun, J., Hill, C. E., & Bunge, M. B. ( 2009 ). Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neuroscience Letters, 456 ( 3 ), 124 – 132. https://doi.org/10.1016/j.neulet.2008.08.092
dc.identifier.citedreferenceGritli‐Linde, A., Lewis, P., McMahon, A. P., & Linde, A. ( 2001 ). The whereabouts of a morphogen: Direct evidence for short‐ and graded long‐range activity of hedgehog signaling peptides. Developmental Biology, 236 ( 2 ), 364 – 386. https://doi.org/10.1006/dbio.2001.0336
dc.identifier.citedreferenceHawryluk, G. W. J., & Fehlings, M. G. ( 2008 ). The center of the spinal cord may be central to Its repair. Cell Stem Cell, 3 ( 3 ), 230 – 232. https://doi.org/10.1016/j.stem.2008.08.009
dc.identifier.citedreferenceHill, R. A., Patel, K. D., Medved, J., Reiss, A. M., & Nishiyama, A. ( 2013 ). NG2 cells in white matter but not gray matter proliferate in response to PDGF. Journal of Neuroscience, 33 ( 36 ), 14558 – 14566. https://doi.org/10.1523/JNEUROSCI.2001‐12.2013
dc.identifier.citedreferenceHinks, G. L., & Franklin, R. J. M. ( 1999 ). Distinctive patterns of PDGF‐A, FGF‐2, IGF‐I, and TGF‐beta1 gene expression during remyelination of experimentally‐induced spinal cord demyelination. Molecular and Cellular Neuroscience, 14 ( 2 ), 153 – 168. https://doi.org/10.1006/mcne.1999.0771
dc.identifier.citedreferenceHorky, L. L., Galimi, F., Gage, F. H., & Horner, P. J. ( 2006 ). Fate of endogenous stem/progenitor cells following spinal cord injury. Journal of Comparative Neurology, 498 ( 4 ), 525 – 538. https://doi.org/10.1002/cne.21065
dc.identifier.citedreferenceHsu, J. Y., Stein, S. A., & Xu, X. M. ( 2006 ). Development of the corticospinal tract in the mouse spinal cord: A quantitative ultrastructural analysis. Brain Research, 1084 ( 1 ), 16 – 27. https://doi.org/10.1016/j.brainres.2006.02.036
dc.identifier.citedreferenceHu, J. G., Fu, S. L., Wang, Y. X., Li, Y., Jiang, X. Y., Wang, X. F., … Xu, X. M. ( 2008 ). Platelet‐derived growth factor‐AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal‐regulated kinase signaling pathway. Neuroscience, 151 ( 1 ), 138 – 147. https://doi.org/10.1016/j.neuroscience.2007.10.050
dc.identifier.citedreferenceHughes, S. M., Moussavi‐Harami, F., Sauter, S. L., & Davidson, B. L. ( 2002 ). Viral‐mediated gene transfer to mouse primary neural progenitor cells. Molecular Therapy, 5 ( 1 ), 16 – 24. https://doi.org/10.1006/mthe.2001.0512
dc.identifier.citedreferenceKadoya, K., Tsukada, S., Lu, P., Coppola, G., Geschwind, D., Filbin, M. T., … Tuszynski, M. H. ( 2009 ). Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron, 64 ( 2 ), 165 – 172. https://doi.org/10.1016/j.neuron.2009.09.016
dc.identifier.citedreferenceKarimi‐Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C. M., & Fehlings, M. G. ( 2006 ). Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. Journal of Neuroscience, 26 ( 13 ), 3377 – 3389. https://doi.org/10.1523/jneurosci.4184‐05.2006
dc.identifier.citedreferenceLaporte, L. D., Yang, Y., Zelivyanskaya, M. L., Cummings, B. J., Anderson, A. J., & Shea, L. D. ( 2009 ). Plasmid releasing multiple channel bridges for transgene expression after spinal cord injury. Molecular Therapy, 17 ( 2 ), 318 – 326. https://doi.org/10.1038/mt.2008.252
dc.identifier.citedreferenceLasiene, J., Shupe, L., Perlmutter, S., & Horner, P. ( 2008 ). No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. Journal of Neuroscience, 28 ( 15 ), 3887 – 3896. https://doi.org/10.1523/JNEUROSCI.4756‐07.2008
dc.identifier.citedreferenceLee, H. J., Wu, J., Chung, J., & Wrathall, J. R. ( 2013 ). SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. Journal of Neuroscience Research, 91 ( 2 ), 196 – 210. https://doi.org/10.1002/jnr.23151
dc.identifier.citedreferenceLi, G. L., Farooque, M., Holtz, A., & Olsson, Y. ( 1999 ). Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathologica, 98 ( 5 ), 473 – 480.
dc.identifier.citedreferenceLi, J., & Lepski, G. ( 2013 ). Cell transplantation for spinal cord injury: A systematic review. BioMed Research International, 2013, 786475 – 32. https://doi.org/10.1155/2013/786475
dc.identifier.citedreferenceLi, J., Rickett, T. A., & Shi, R. ( 2009 ). Biomimetic nerve scaffolds with aligned intraluminal microchannels: A “sweet” approach to tissue engineering. Langmuir, 25 ( 3 ), 1813 – 1817. https://doi.org/10.1021/la803522f
dc.identifier.citedreferenceLiu, A., & Niswander, L. A. ( 2005 ). Bone morphogenetic protein signalling and vertebrate nervous system development. Nature Reviews Neuroscience, 6 ( 12 ), 945 – 954. https://doi.org/10.1038/nrn1805
dc.identifier.citedreferenceLourenço, T., & Grãos, M. ( 2016 ). Modulation of oligodendrocyte differentiation by mechanotransduction. Frontiers in Cellular Neuroscience, 10 ( 277 ) https://doi.org/10.3389/fncel.2016.00277
dc.identifier.citedreferenceLowry, N., Goderie, S. K., Lederman, P., Charniga, C., Gooch, M. R., Gracey, K. D., … Temple, S. ( 2012 ). The effect of long‐term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials, 33 ( 10 ), 2892 – 2901. https://doi.org/10.1016/j.biomaterials.2011.12.048
dc.identifier.citedreferenceLutton, C., Young, Y. W., Williams, R., Meedeniya, A. C., Mackay‐Sim, A., & Goss, B. ( 2012 ). Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. Journal of Neurotrauma, 29 ( 5 ), 957 – 970. https://doi.org/10.1089/neu.2010.1423
dc.identifier.citedreferenceLytle, J. M., & Wrathall, J. R. ( 2007 ). Glial cell loss, proliferation, and replacement in the contused murine spinal cord. European Journal of Neuroscience, 25 ( 6 ), 1711 – 1724. https://doi.org/10.1111/j.1460‐9568.2007.05390.x
dc.identifier.citedreferenceMargul, D. J., Park, J., Boehler, R. M., Smith, D. R., Johnson, M. A., McCreedy, D. A., … Seidlits, S. K. ( 2016 ). Reducing neuroinflammation by delivery of IL‐10 encoding lentivirus from multiple‐channel bridges. Bioengineering & Translational Medicine, 1, 136 – 148. https://doi.org/10.1002/btm2.10018
dc.identifier.citedreferenceMarti, E., & Bovolenta, P. ( 2002 ). Sonic hedgehog in CNS development: One signal, multiple outputs. Trends in Neurosciences, 25 ( 2 ), 89 – 96.
dc.identifier.citedreferenceMcCreedy, D. A., Margul, D. J., Seidlits, S. K., Antane, J. T., Thomas, R. J., Sissman, G. M., … Shea, L. D. ( 2016 ). Semi‐automated counting of axon regeneration in poly (lactide co‐glycolide) spinal cord bridges. Journal of Neuroscience Methods, 263, 15 – 22. https://doi.org/10.1016/j.jneumeth.2016.01.021
dc.identifier.citedreferenceMcIver, S. R., Muccigrosso, M., Gonzales, E. R., Lee, J. M., Roberts, M. S., Sands, M. S., & Goldberg, M. P. ( 2010 ). Oligodendrocyte degeneration and recovery after focal cerebral ischemia. Neuroscience, 169 ( 3 ), 1364 – 1375. https://doi.org/10.1016/j.neuroscience.2010.04.070
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.