Show simple item record

WISHE‐Moisture Mode in an Aquaplanet Simulation

dc.contributor.authorShi, Xiaoming
dc.contributor.authorKim, Daehyun
dc.contributor.authorAdames, Ángel F.
dc.contributor.authorSukhatme, Jai
dc.date.accessioned2018-12-06T17:36:25Z
dc.date.available2019-12-02T14:55:10Zen
dc.date.issued2018-10
dc.identifier.citationShi, Xiaoming; Kim, Daehyun; Adames, Ángel F. ; Sukhatme, Jai (2018). "WISHE‐Moisture Mode in an Aquaplanet Simulation." Journal of Advances in Modeling Earth Systems 10(10): 2393-2407.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/146576
dc.description.abstractThis study aims to understand the nature of the tropical intraseasonal oscillations (ISOs) in an aquaplanet simulation performed using Geophysical Fluid Dynamics Laboratory’s AM2.1 with a uniform sea surface temperature within the deep tropics. The simulated ISO resembles the observed Madden‐Julian Oscillation in that the spectral peak in precipitation appears at zonal wave number 1 and a period of ~60 days. Vertically integrated moist static energy budget of the simulated ISO shows that enhanced latent heat flux to the east of anomalously active convection causes eastward propagation of the ISO mode, which is weakly opposed by horizontal moisture advection. A series of mechanism denial experiments are conducted either by homogenizing select variables—surface wind stress, longwave radiative heating, and surface evaporation—with their zonal means from the control simulation or by suppressing free‐tropospheric moisture variation. Results of the mechanism denial experiments show that the simulated ISO disappears when the interactive surface evaporation is disabled, suggesting that the wind‐induced surface heat exchange (WISHE) mechanism is essential to the simulated ISO. Longwave cloud‐radiation feedbacks and moisture‐convection feedbacks affect horizontal scale and phase speed of the simulated ISO, respectively. Our results strongly suggest that the simulated ISO is the linear WISHE‐moisture mode of Fuchs and Raymond under horizontally uniform boundary conditions.Key PointsAn aquaplanet simulation exhibits a mode of planetary‐scale (wave number 1), eastward propagating intraseasonal variabilityMoist static energy budget and mechanism denial experiments suggest that this mode is the linear WISHE‐moisture mode of Fuchs and RaymondThe WISHE and longwave cloud‐radiation feedbacks serve as scale selection mechanisms for the intraseasonal variability
dc.publisherWiley Periodicals, Inc.
dc.subject.otherWISHE‐moisture mode
dc.subject.otheraquaplanet simulation
dc.subject.othertropical intraseasonal oscillation
dc.titleWISHE‐Moisture Mode in an Aquaplanet Simulation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146576/1/jame20767_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146576/2/jame20767.pdf
dc.identifier.doi10.1029/2018MS001441
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferenceRotstayn, L. D., Ryan, B. F., & Katzfey, J. J. ( 2000 ). A scheme for calculation of the liquid fraction in mixed‐phase stratiform clouds in large‐scale models. Monthly Weather Review, 128 ( 4 ), 1070 – 1088. https://doi.org/10.1175/1520‐0493(2000)128<1070:ASFCOT>2.0.CO;2
dc.identifier.citedreferenceMoorthi, S., & Suarez, M. J. ( 1992 ). Relaxed Arakawa‐Schubert: A parameterization of moist convection for general circulation models. Monthly Weather Review, 128 ( 4 ), 1070 – 1088. https://doi.org/10.1175/1520‐0493(2000)128<1070:ASFCOT>2.0.CO;2
dc.identifier.citedreferenceMyers, D. S., & Waliser, D. E. ( 2003 ). Three‐dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. Journal of Climate, 16 ( 6 ), 929 – 950. https://doi.org/10.1175/1520-0442(2003)016<0929:TDWVAC>2.0.CO;2
dc.identifier.citedreferenceNeelin, J. D., Held, I. M., & Cook, K. H. ( 1987 ). Evaporation‐wind feedback and low‐frequency variability in the tropical atmosphere. Journal of the Atmospheric Sciences, 44 ( 16 ), 2341 – 2348. https://doi.org/10.1175/1520‐0469(1987)044<2341:EWFALF>2.0.CO;2
dc.identifier.citedreferenceRaymond, D. J., & Fuchs, Ž. ( 2009 ). Moisture modes and the Madden–Julian oscillation. Journal of Climate, 22 ( 11 ), 3031 – 3046.
dc.identifier.citedreferenceRotstayn, L. D. ( 1997 ). A physically based scheme for the treatment of stratiform clouds and precipitation in large‐scale models. I: Description and evaluation of the microphysical processes. Quarterly Journal of the Royal Meteorological Society, 123 ( 541 ), 1227 – 1282. https://doi.org/10.1002/qj.49712354106
dc.identifier.citedreferenceFuchs, Ž., & Raymond, D. J. ( 2017 ). A simple model of intraseasonal oscillations. Journal of Advances in Modeling Earth Systems, 9, 1195 – 1211. https://doi.org/10.1002/2017MS000963
dc.identifier.citedreferenceShi, X., & Bretherton, C. S. ( 2014 ). Large‐scale character of an atmosphere in rotating radiative‐convective equilibrium. Journal of Advances in Modeling Earth Systems, 6, 616 – 629. https://doi.org/10.1002/2014MS000342
dc.identifier.citedreferenceShinoda, T., Hendon, H. H., & Glick, J. ( 1998 ). Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. Journal of Climate, 11 ( 7 ), 1685 – 1702. https://doi.org/10.1175/1520‐0442(1998)011<1685:IVOSFA>2.0.CO;2
dc.identifier.citedreferenceSobel, A. H., & Maloney, E. ( 2012 ). An idealized semi‐empirical framework for modeling the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 69 ( 5 ), 1691 – 1705. https://doi.org/10.1175/JAS‐D‐11‐0118.1
dc.identifier.citedreferenceSobel, A. H., & Maloney, E. ( 2013 ). Moisture modes and the eastward propagation of the MJO. Journal of the Atmospheric Sciences, 70 ( 1 ), 187 – 192. https://doi.org/10.1175/JAS‐D‐12‐0189.1
dc.identifier.citedreferenceSobel, A. H., Maloney, E. D., Bellon, G., & Frierson, D. M. ( 2010 ). Surface fluxes and tropical intraseasonal variability: A reassessment. Journal of Advances in Modeling Earth Systems, 2, 2. https://doi.org/10.3894/JAMES.2010.2.2
dc.identifier.citedreferenceSwinbank, R., Palmer, T. N., & Davey, M. K. ( 1988 ). Numerical simulations of the Madden and Julian oscillation. Journal of the Atmospheric Sciences, 45 ( 5 ), 774 – 788. https://doi.org/10.1175/1520‐0469(1988)045<0774:NSOTMA>2.0.CO;2
dc.identifier.citedreferenceTiedtke, M. ( 1993 ). Representation of clouds in large‐scale models. Monthly Weather Review, 121 ( 11 ), 3040 – 3061. https://doi.org/10.1175/1520‐0493(1993)121<3040:ROCILS>2.0.CO;2
dc.identifier.citedreferenceWang, B. ( 1988 ). Dynamics of tropical low‐frequency waves: An analysis of the moist kelvin wave. Journal of the Atmospheric Sciences, 45 ( 14 ), 2051 – 2065. https://doi.org/10.1175/1520‐0469(1988)045<2051:DOTLFW>2.0.CO;2
dc.identifier.citedreferenceWang, B., & Chen, G. ( 2017 ). A general theoretical framework for understanding essential dynamics of madden–Julian oscillation. Climate Dynamics, 49 ( 7–8 ), 2309 – 2328. https://doi.org/10.1007/s00382‐016‐3448‐1
dc.identifier.citedreferenceWang, B., & Li, T. ( 1994 ). Convective interaction with boundary‐layer dynamics in the development of the tropical intraseasonal system. Journal of the Atmospheric Sciences, 51 ( 11 ), 1386 – 1400. https://doi.org/10.1175/1520‐0469(1994)051<1386:CIWBLD>2.0.CO;2
dc.identifier.citedreferenceWang, B., & Rui, H. ( 1990 ). Dynamics of the coupled moist Kelvin‐Rossby wave on an equatorial β ‐plane. Journal of the Atmospheric Sciences, 47 ( 4 ), 397 – 413. https://doi.org/10.1175/1520‐0469(1990)047<0397:DOTCMK>2.0.CO;2
dc.identifier.citedreferenceYano, J.‐I., & Emanuel, K. ( 1991 ). An improved model of the equatorial troposphere and its coupling with stratosphere. Journal of the Atmospheric Sciences, 48 ( 3 ), 377 – 389. https://doi.org/10.1175/1520‐0469(1991)048<0377:AIMOTE>2.0.CO;2
dc.identifier.citedreferenceYasunaga, K., & Mapes, B. ( 2012 ). Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space–time filtering. Journal of the Atmospheric Sciences, 69 ( 1 ), 17 – 34.
dc.identifier.citedreferenceZhang, C. ( 2013 ). Madden–Julian oscillation: Bridging weather and climate. Bulletin of the American Meteorological Society, 94 ( 12 ), 1849 – 1870. https://doi.org/10.1175/BAMS‐D‐12‐00026.1
dc.identifier.citedreferenceEmanuel, K. A., David Neelin, J., & Bretherton, C. S. ( 1994 ). On large‐scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120 ( 519 ), 1111 – 1143. https://doi.org/10.1002/qj.49712051902
dc.identifier.citedreferenceAdames, Á. F., & Kim, D. ( 2016 ). The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. Journal of the Atmospheric Sciences, 73 ( 3 ), 913 – 941. https://doi.org/10.1175/JAS‐D‐15‐0170.1
dc.identifier.citedreferenceAdames, Á. F., & Wallace, J. M. ( 2014 ). Three‐dimensional structure and evolution of the MJO and its relation to the mean flow. Journal of the Atmospheric Sciences, 71 ( 6 ), 2007 – 2026. https://doi.org/10.1175/JAS‐D‐13‐0254.1
dc.identifier.citedreferenceAdames, Á. F., & Wallace, J. M. ( 2015 ). Three‐dimensional structure and evolution of the moisture field in the MJO. Journal of the Atmospheric Sciences, 72 ( 10 ), 3733 – 3754. https://doi.org/10.1175/JAS‐D‐15‐0003.1
dc.identifier.citedreferenceAndersen, J. A., & Kuang, Z. ( 2012 ). Moist static energy budget of MJO‐like disturbances in the atmosphere of a zonally symmetric aquaplanet. Journal of Climate, 25 ( 8 ), 2782 – 2804. https://doi.org/10.1175/JCLI‐D‐11‐00168.1
dc.identifier.citedreferenceAnderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L., Dixon, K. W., Donner, L. J. ( 2004 ). The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. Journal of Climate, 17 ( 24 ), 4641 – 4673. https://doi.org/10.1175/JCLI‐3223.1
dc.identifier.citedreferenceArnold, N. P., Kuang, Z., & Tziperman, E. ( 2013 ). Enhanced MJO‐like variability at high SST. Journal of Climate, 26 ( 3 ), 988 – 1001. https://doi.org/10.1175/JCLI‐D‐12‐00272.1
dc.identifier.citedreferenceArnold, N. P., & Randall, D. A. ( 2015 ). Global‐scale convective aggregation: Implications for the madden‐Julian oscillation. Journal of Advances in Modeling Earth Systems, 7, 1499 – 1518. https://doi.org/10.1002/2015MS000498
dc.identifier.citedreferenceBlackburn, M., & Hoskins, B. J. ( 2013 ). Context and aims of the Aqua‐Planet Experiment. Journal of the Meteorological Society of Japan. Ser. II, 91, 1 – 15.
dc.identifier.citedreferenceBony, S., & Emanuel, K. A. ( 2005 ). On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. Journal of the Atmospheric Sciences, 62 ( 8 ), 2770 – 2789. https://doi.org/10.1175/JAS3506.1
dc.identifier.citedreferenceBretherton, C. S., Peters, M. E., & Back, L. E. ( 2004 ). Relationships between water vapor path and precipitation over the tropical oceans. Journal of Climate, 17 ( 7 ), 1517 – 1528. https://doi.org/10.1175/1520‐0442(2004)017<1517:RBWVPA>2.0.CO;2
dc.identifier.citedreferenceChao, W. C., & Chen, B. D. ( 2001 ). The role of surface friction in tropical intraseasonal oscillation. Monthly Weather Review, 129 ( 4 ), 896 – 904. https://doi.org/10.1175/1520‐0493(2001)129<0896:TROSFI>2.0.CO;2
dc.identifier.citedreferenceCrueger, T., & Stevens, B. ( 2015 ). The effect of atmospheric radiative heating by clouds on the madden‐Julian oscillation. Journal of Advances in Modeling Earth Systems, 7, 854 – 864. https://doi.org/10.1002/2015MS000434
dc.identifier.citedreferenceDas, S., Sengupta, D., Chakraborty, A., Sukhatme, J., & Murtugudde, R. ( 2016 ). Low‐frequency intraseasonal variability in a zonally symmetric aquaplanet model. Meteorology and Atmospheric Physics, 128 ( 6 ), 697 – 713. https://doi.org/10.1007/s00703‐016‐0448‐y
dc.identifier.citedreferenceEmanuel, K. A. ( 1987 ). An air‐sea interaction‐model of intraseasonal oscillations in the tropics. Journal of the Atmospheric Sciences, 44 ( 16 ), 2324 – 2340. https://doi.org/10.1175/1520‐0469(1987)044<2324:AASIMO>2.0.CO;2
dc.identifier.citedreferenceEmanuel, K. A. ( 1993 ). The effect of convective response time on WISHE modes. Journal of the Atmospheric Sciences, 50 ( 12 ), 1763 – 1776. https://doi.org/10.1175/1520‐0469(1993)050<1763:TEOCRT>2.0.CO;2
dc.identifier.citedreferenceGrabowski, W. W. ( 2003 ). MJO‐like coherent structures: Sensitivity simulations using the cloud‐resolving convection parameterization (CRCP). Journal of the Atmospheric Sciences, 60 ( 6 ), 847 – 864. https://doi.org/10.1175/1520‐0469(2003)060<0847:MLCSSS>2.0.CO;2
dc.identifier.citedreferenceHayashi, Y. Y., & Sumi, A. ( 1986 ). The 30‐40 day oscillations simulated in an“ aqua planet” model. Journal of the Meteorological Society of Japan. Ser. II, 64 ( 4 ), 451 – 467.
dc.identifier.citedreferenceHsu, P., & Li, T. ( 2012 ). Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. Journal of Climate, 25 ( 14 ), 4914 – 4931. https://doi.org/10.1175/JCLI‐D‐11‐00310.1
dc.identifier.citedreferenceHsu, P., Li, T., & Murakami, H. ( 2014 ). Moisture asymmetry and MJO eastward propagation in an aquaplanet general circulation model. Journal of Climate, 27 ( 23 ), 8747 – 8760. https://doi.org/10.1175/JCLI‐D‐14‐00148.1
dc.identifier.citedreferenceJiang, X., Zhao, M., Maloney, E. D., & Waliser, D. E. ( 2016 ). Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden‐Julian Oscillation. Geophysical Research Letters, 43, 10,412 – 10,419. https://doi.org/10.1002/2016GL070898
dc.identifier.citedreferenceKang, I., Liu, F., Ahn, M., Yang, Y., & Wang, B. ( 2013 ). The role of SST structure in convectively coupled Kelvin–Rossby waves and its implications for MJO formation. Journal of Climate, 26 ( 16 ), 5915 – 5930. https://doi.org/10.1175/JCLI‐D‐12‐00303.1
dc.identifier.citedreferenceKim, D., Kug, J.‐S., & Sobel, A. H. ( 2014 ). Propagating versus nonpropagating Madden–Julian oscillation events. Journal of Climate, 27 ( 1 ), 111 – 125. https://doi.org/10.1175/JCLI‐D‐13‐00084.1
dc.identifier.citedreferenceKim, D., Sobel, A. H., & Kang, I.‐S. ( 2011 ). A mechanism denial study on the Madden‐Julian oscillation. Journal of Advances in Modeling Earth Systems, 3, M12007. https://doi.org/10.1029/2011MS000081
dc.identifier.citedreferenceKim, Y.‐J., Giraldo, F. X., Flatau, M., Liou, C.‐S., & Peng, M. S. ( 2008 ). A sensitivity study of the Kelvin wave and the Madden‐Julian Oscillation in aquaplanet simulations by the Naval Research Laboratory Spectral Element Atmospheric Model. Journal of Geophysical Research, 113, D20102. https://doi.org/10.1029/2008JD009887
dc.identifier.citedreferenceLee, M. I., Kang, I. S., Kim, J. K., & Mapes, B. E. ( 2001 ). Influence of cloud‐radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. Journal of Geophysical Research, 106 ( D13 ), 14,219 – 14,233. https://doi.org/10.1029/2001JD900143
dc.identifier.citedreferenceLeroux, S., Bellon, G., Roehrig, R., Caian, M., Klingaman, N. P., Lafore, J. P., Musat, I., Rio, C., & Tyteca, S. ( 2016 ). Inter‐model comparison of subseasonal tropical variability in aquaplanet experiments: Effect of a warm pool. Journal of Advances in Modeling Earth Systems, 8, 1526 – 1551. https://doi.org/10.1002/2016MS000683
dc.identifier.citedreferenceLin, S.‐J. ( 2004 ). A “vertically Lagrangian” finite‐volume dynamical core for global models. Monthly Weather Review, 132, 2293 – 2307. https://doi.org/10.1175/1520-0493(2004)132,2293:AVLFDC.2.0.CO;2
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1971 ). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28 ( 5 ), 702 – 708. https://doi.org/10.1175/1520‐0469(1971)028<0702:DOADOI>2.0.CO;2
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1972 ). Description of global‐scale circulation cells in the tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29 ( 6 ), 1109 – 1123. https://doi.org/10.1175/1520‐0469(1972)029<1109:DOGSCC>2.0.CO;2
dc.identifier.citedreferenceMajda, A. J., & Stechmann, S. N. ( 2009 ). The skeleton of tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences, 106 ( 21 ), 8417 – 8422.
dc.identifier.citedreferenceMaloney, E. D., & Sobel, A. H. ( 2004 ). Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. Journal of Climate, 17 ( 22 ), 4368 – 4386. https://doi.org/10.1175/JCLI‐3212.1
dc.identifier.citedreferenceMaloney, E. D., Sobel, A. H., & Hannah, W. M. ( 2010 ). Intraseasonal variability in an Aquaplanet general circulation model. Journal of Advances in Modeling Earth Systems, 2, 5. https://doi.org/10.3894/JAMES.2010.2.5
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.