Show simple item record

Nanopore‐Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects

dc.contributor.authorHoughtaling, Jared
dc.contributor.authorList, Jonathan
dc.contributor.authorMayer, Michael
dc.date.accessioned2018-12-06T17:36:28Z
dc.date.available2020-01-06T16:41:00Zen
dc.date.issued2018-11
dc.identifier.citationHoughtaling, Jared; List, Jonathan; Mayer, Michael (2018). "Nanopore‐Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects." Small 14(46): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/146577
dc.description.abstractAggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so‐called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid‐forming protein can exist in different states of assembly, ranging from nanometer‐sized monomers to micrometer‐long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore‐based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles—rapidly, label‐free, and in aqueous solution—with regard to their size, shape, and abundance. The article describes the concept of nanopore‐based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single‐particle level.Information about amyloid aggregation states is critical to understanding the pathological progression of many neurodegenerative diseases. Resistive pulse‐based nanopore sensing is a unique single‐molecule approach to studying these aggregation states because it can determine information about individual amyloids, oligomeric species, or fibrils in an aqueous solution without fluorescent labels or chemical modifications.
dc.publisherWorld Health Organization
dc.publisherWiley Periodicals, Inc.
dc.subject.otheramyloid aggregate
dc.subject.othersingle molecule
dc.subject.otherresistive pulse sensing
dc.subject.othernanopore
dc.subject.otherbiomarker
dc.titleNanopore‐Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146577/1/smll201802412_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146577/2/smll201802412.pdf
dc.identifier.doi10.1002/smll.201802412
dc.identifier.sourceSmall
dc.identifier.citedreferenceH. Kwok, K. Briggs, V. Tabard‐Cossa, PLoS One 2014, 9, e92880.
dc.identifier.citedreferenceM. Langecker, A. Ivankin, S. Carson, S. R. Kinney, F. C. Simmel, M. Wanunu, Nano Lett. 2015, 15, 783.
dc.identifier.citedreferenceC. G. Glabe, J. Biol. Chem. 2008, 283, 29639.
dc.identifier.citedreferenceA. N. Klein, T. Ziehm, T. van Groen, I. Kadish, A. Elfgen, M. Tusche, M. Thomaier, K. Reiss, O. Brener, L. Gremer, ACS Chem. Neurosci. 2017, 8, 1889.
dc.identifier.citedreferenceL. T. Sexton, H. Mukaibo, P. Katira, H. Hess, S. A. Sherrill, L. P. Horne, C. R. Martin, J. Am. Chem. Soc. 2010, 132, 6755.
dc.identifier.citedreferenceM. Mayer, E. Yusko, J. Yang, Google Patents, 2016.
dc.identifier.citedreferenceA. Balan, C.‐C. Chien, R. Engelke, M. Drndić, Sci. Rep. 2016, 5, 17775.
dc.identifier.citedreferenceJ. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, K. L. Shepard, Nat. Methods 2012, 9, 487.
dc.identifier.citedreferenceA. Ananth, M. Genua, N. Aissaoui, L. Díaz, N. B. Eisele, S. Frey, C. Dekker, R. P. Richter, D. Görlich, Small 2018, 14, 1703357.
dc.identifier.citedreferenceE. A. Manrao, I. M. Derrington, A. H. Laszlo, K. W. Langford, M. K. Hopper, N. Gillgren, M. Pavlenok, M. Niederweis, J. H. Gundlach, Nat. Biotechnol. 2012, 30, 349.
dc.identifier.citedreferenceA. S. Mikheyev, M. M. Tin, Mol. Ecol. Resour. 2014, 14, 1097.
dc.identifier.citedreferenceJ. E. Reiner, J. J. Kasianowicz, B. J. Nablo, J. W. F. Robertson, Proc. Natl. Acad. Sci. USA 2010, 107, 12080.
dc.identifier.citedreferenceS. Kumar, C. Tao, M. Chien, B. Hellner, A. Balijepalli, J. W. F. Robertson, Z. Li, J. J. Russo, J. E. Reiner, J. J. Kasianowicz, J. Ju, Sci. Rep. 2012, 2, 684.
dc.identifier.citedreferenceC. W. Fuller, S. Kumar, M. Porel, M. Chien, A. Bibillo, P. B. Stranges, M. Dorwart, C. Tao, Z. Li, W. Guo, S. Shi, D. Korenblum, A. Trans, A. Aguirre, E. Liu, E. T. Harada, J. Pollard, A. Bhat, C. Cech, A. Yang, C. Arnold, M. Palla, J. Hovis, R. Chen, I. Morozova, S. Kalachikov, J. J. Russo, J. J. Kasianowicz, R. Davis, S. Roever, G. M. Church, J. Ju, Proc. Natl. Acad. Sci. USA 2016, 113, 5233.
dc.identifier.citedreferenceE. E. Nesterov, J. Skoch, B. T. Hyman, W. E. Klunk, B. J. Bacskai, T. M. Swager, Angew. Chem., Int. Ed. 2005, 44, 5452.
dc.identifier.citedreferenceG. V. Soni, A. Singer, Z. Yu, Y. Sun, B. McNally, A. Meller, Rev. Sci. Instrum. 2010, 81, 014301.
dc.identifier.citedreferenceS. Liu, A. R. Hawkins, H. Schmidt, Microchim. Acta 2016, 183, 1275.
dc.identifier.citedreferenceS. Huang, M. Romero‐Ruiz, O. K. Castell, H. Bayley, M. I. Wallace, Nat. Nanotechnol. 2015, 10, 986.
dc.identifier.citedreferenceB. N. Anderson, O. N. Assad, T. Gilboa, A. H. Squires, D. Bar, A. Meller, ACS Nano 2014, 8, 11836.
dc.identifier.citedreferenceT. Gilboa, A. Meller, Analyst 2015, 140, 4733.
dc.identifier.citedreferenceS. Krishnan, D. Ziegler, V. Arnaut, T. G. Martin, K. Kapsner, K. Henneberg, A. R. Bausch, H. Dietz, F. C. Simmel, Nat. Commun. 2016, 7, 12787.
dc.identifier.citedreferenceT. Tucker, M. Marra, J. M. Friedman, Am. J. Hum. Genet. 2009, 85, 142.
dc.identifier.citedreferenceK. Misiunas, N. Ermann, U. F. Keyser, Nano Lett. 2018.
dc.identifier.citedreferenceR. Y. Henley, B. A. Ashcroft, I. Farrell, B. S. Cooperman, S. M. Lindsay, M. Wanunu, Nano Lett. 2016, 16, 138.
dc.identifier.citedreferenceM. Langecker, V. Arnaut, T. G. Martin, J. List, S. Renner, M. Mayer, H. Dietz, F. C. Simmel, Science 2012, 338, 932.
dc.identifier.citedreferenceT. B. Schroeder, J. Houghtaling, B. D. Wilts, M. Mayer, Adv. Mater. 2018, 30, 1705322.
dc.identifier.citedreferenceR. An, J. D. Uram, E. C. Yusko, K. Ke, M. Mayer, A. J. Hunt, Opt. Lett. 2008, 33, 1153.
dc.identifier.citedreferenceA. E. Herr, Anal. Chem. 2013, 85, 7622.
dc.identifier.citedreferenceV. L. Villemagne, V. Doré, S. C. Burnham, C. L. Masters, C. C. Rowe, Nat. Rev. Neurol. 2018, 14, 225.
dc.identifier.citedreferenceR. W. DeBlois, C. P. Bean, Rev. Sci. Instrum. 1970, 41, 909.
dc.identifier.citedreferenceH. Bayley, C. R. Martin, Chem. Rev. 2000, 100, 2575.
dc.identifier.citedreferenceC. D. Ahrberg, J. M. Lee, B. G. Chung, Sci. Rep. 2018, 8, 2438.
dc.identifier.citedreferenceJ. D. Uram, K. Ke, A. J. Hunt, M. Mayer, Small 2006, 2, 967.
dc.identifier.citedreferenceJ. Hardy, D. J. Selkoe, Science 2002, 297, 353.
dc.identifier.citedreferenceF. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2006, 75, 333.
dc.identifier.citedreferenceT. P. Knowles, M. J. Buehler, Nat. Nanotechnol. 2011, 6, 469.
dc.identifier.citedreferenceC. Haass, D. J. Selkoe, Nat. Rev. Mol. Cell Biol. 2007, 8, 101.
dc.identifier.citedreferenceD. Eisenberg, M. Jucker, Cell 2012, 148, 1188.
dc.identifier.citedreferenceC. Ballard, S. Gauthier, A. Corbett, C. Brayne, D. Aarsland, E. Jones, Lancet 2011, 377, 1019.
dc.identifier.citedreferenceWorld Health Organization, Dementia: A Public Health Priority, World Health Organization, 2012.
dc.identifier.citedreferenceJ. J. Yerbury, L. Ooi, A. Dillin, D. N. Saunders, D. M. Hatters, P. M. Beart, N. R. Cashman, M. R. Wilson, H. Ecroyd, J. Neurochem. 2016, 137, 489.
dc.identifier.citedreferenceT. L. Spires‐Jones, J. Attems, D. R. Thal, Acta Neuropathol. 2017, 134, 187.
dc.identifier.citedreferenceR. Nelson, M. R. Sawaya, M. Balbirnie, A. Ø. Madsen, C. Riekel, R. Grothe, D. Eisenberg, Nature 2005, 435, 773.
dc.identifier.citedreferenceJ. T. Jarrett, P. T. Lansbury Jr., Cell 1993, 73, 1055.
dc.identifier.citedreferenceX. Han, G. He, ACS Chem. Neurosci. 2018, 9, 198.
dc.identifier.citedreferenceP. Prangkio, E. C. Yusko, D. Sept, J. Yang, M. Mayer, PLoS One 2012, 7, e47261.
dc.identifier.citedreferenceS. Pellegrino, N. Tonali, E. Erba, J. Kaffy, M. Taverna, A. Contini, M. Taylor, D. Allsop, M. L. Gelmi, S. Ongeri, Chem. Sci. 2017, 8, 1295.
dc.identifier.citedreferenceM. Hölttä, O. Hansson, U. Andreasson, J. Hertze, L. Minthon, K. Nägga, N. Andreasen, H. Zetterberg, K. Blennow, PLoS One 2013, 8, e66381.
dc.identifier.citedreferenceO. Hansson, S. Hall, A. Öhrfelt, H. Zetterberg, K. Blennow, L. Minthon, K. Nägga, E. Londos, S. Varghese, N. K. Majbour, Alzheimer’s Res. Ther. 2014, 6, 25.
dc.identifier.citedreferenceE. Bagyinszky, V. Van Giau, K. Shim, K. Suk, S. S. A. An, S. Kim, J. Neurol. Sci. 2017, 376, 242.
dc.identifier.citedreferenceB. Olsson, R. Lautner, U. Andreasson, A. Öhrfelt, E. Portelius, M. Bjerke, M. Hölttä, C. Rosén, C. Olsson, G. Strobel, Lancet Neurol. 2016, 15, 673.
dc.identifier.citedreferenceS. J. C. Lee, E. Nam, H. J. Lee, M. G. Savelieff, M. H. Lim, Chem. Soc. Rev. 2017, 46, 310.
dc.identifier.citedreferenceH. Li, F. Rahimi, S. Sinha, P. Maiti, G. Bitan, K. Murakami, Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, John Wiley & Sons Ltd., Chichester, UK 2006.
dc.identifier.citedreferenceD. B. Teplow, N. D. Lazo, G. Bitan, S. Bernstein, T. Wyttenbach, M. T. Bowers, A. Baumketner, J.‐E. Shea, B. Urbanc, L. Cruz, Acc. Chem. Res. 2006, 39, 635.
dc.identifier.citedreferenceM. R. Nilsson, Methods 2004, 34, 151.
dc.identifier.citedreferenceF. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2017, 86, 27.
dc.identifier.citedreferenceA. E. Langkilde, B. Vestergaard, FEBS Lett. 2009, 583, 2600.
dc.identifier.citedreferenceS. W. Chen, S. Drakulic, E. Deas, M. Ouberai, F. A. Aprile, R. Arranz, S. Ness, C. Roodveldt, T. Guilliams, E. J. De‐Genst, Proc. Natl. Acad. Sci. USA 2015, 112, E1994.
dc.identifier.citedreferenceM. G. Zagorski, J. Yang, H. Shao, K. Ma, H. Zeng, A. Hong, Methods in Enzymology, Academic, San Diego, CA 1999, pp. 189 – 204.
dc.identifier.citedreferenceB. J. Alper, W. K. Schmidt, J. Neurosci. Methods 2009, 178, 40.
dc.identifier.citedreferenceJ. J. Kasianowicz, A. K. Balijepalli, J. Ettedgui, J. H. Forstater, H. Wang, H. Zhang, J. W. Robertson, Biochim. Biophys. Acta, Biomembr. 2016, 1858, 593.
dc.identifier.citedreferenceM. Ali, S. Nasir, Q. H. Nguyen, J. K. Sahoo, M. N. Tahir, W. Tremel, W. Ensinger, J. Am. Chem. Soc. 2011, 133, 17307.
dc.identifier.citedreferenceW. Shi, A. K. Friedman, L. A. Baker, Anal. Chem. 2017, 89, 157.
dc.identifier.citedreferenceW.‐J. Lan, D. A. Holden, B. Zhang, H. S. White, Anal. Chem. 2011, 83, 3840.
dc.identifier.citedreferenceR. Vogel, W. Anderson, J. Eldridge, B. Glossop, G. Willmott, Anal. Chem. 2012, 84, 3125.
dc.identifier.citedreferenceE. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, M. Mayer, Nat. Nanotechnol. 2011, 6, 253.
dc.identifier.citedreferenceE. C. Yusko, B. R. Bruhn, O. M. Eggenberger, J. Houghtaling, R. C. Rollings, N. C. Walsh, S. Nandivada, M. Pindrus, A. R. Hall, D. Sept, J. Li, D. S. Kalonia, M. Mayer, Nat. Nanotechnol. 2017, 12, 360.
dc.identifier.citedreferenceE. C. Yusko, P. Prangkio, D. Sept, R. C. Rollings, J. Li, M. Mayer, ACS Nano 2012, 6, 5909.
dc.identifier.citedreferenceP. Waduge, R. Hu, P. Bandarkar, H. Yamazaki, B. Cressiot, Q. Zhao, P. C. Whitford, M. Wanunu, ACS Nano 2017, 11, 5706.
dc.identifier.citedreferenceQ. Zhao, R. S. S. de Zoysa, D. Wang, D. A. Jayawardhana, X. Guan, J. Am. Chem. Soc. 2009, 131, 6324.
dc.identifier.citedreferenceQ. Zhao, D. A. Jayawardhana, D. Wang, X. Guan, J. Phys. Chem. B 2009, 113, 3572.
dc.identifier.citedreferenceH.‐Y. Wang, Y.‐L. Ying, Y. Li, H.‐B. Kraatz, Y.‐T. Long, Anal. Chem. 2011, 83, 1746.
dc.identifier.citedreferenceC. A. Madampage, O. Tavassoly, C. Christensen, M. Kumari, J. S. Lee, Prion 2012, 6, 116.
dc.identifier.citedreferenceA. Asandei, I. Schiopu, S. Iftemi, L. Mereuta, T. Luchian, Langmuir 2013, 29, 15634.
dc.identifier.citedreferenceH.‐Y. Wang, Z. Gu, C. Cao, J. Wang, Y.‐T. Long, Anal. Chem. 2013, 85, 8254.
dc.identifier.citedreferenceW. Li, N. A. Bell, S. Hernández‐Ainsa, V. V. Thacker, A. M. Thackray, R. Bujdoso, U. F. Keyser, ACS Nano 2013, 7, 4129.
dc.identifier.citedreferenceN. Martyushenko, N. A. Bell, R. D. Lamboll, U. F. Keyser, Analyst 2015, 140, 4882.
dc.identifier.citedreferenceY.‐X. Hu, Y.‐L. Ying, Z. Gu, C. Cao, B.‐Y. Yan, H.‐F. Wang, Y.‐T. Long, Chem. Commun. 2016, 52, 5542.
dc.identifier.citedreferenceS. Balme, P. E. Coulon, M. Lepoitevin, B. Charlot, N. Yandrapalli, C. Favard, D. Muriaux, M. Bechelany, J.‐M. Janot, Langmuir 2016, 32, 8916.
dc.identifier.citedreferenceC. Wang, H.‐L. Liu, Y.‐Q. Li, J. Cao, B. Zheng, X.‐H. Xia, F. Feng, Electrochem. Commun. 2016, 66, 25.
dc.identifier.citedreferenceR. Hu, J. Diao, J. Li, Z. Tang, X. Li, J. Leitz, J. Long, J. Liu, D. Yu, Q. Zhao, Sci. Rep. 2016, 6, 20776.
dc.identifier.citedreferenceN. Giamblanco, D. Coglitore, J.‐M. Janot, P. E. Coulon, B. Charlot, S. Balme, Sens. Actuators, B 2018, 260, 736.
dc.identifier.citedreferenceV. Sauvage, L. Boizeau, D. Candotti, M. Vandenbogaert, A. Servant‐Delmas, V. Caro, S. Laperche, PLoS One 2018, 13, e0194366.
dc.identifier.citedreferenceW. H. Coulter, U.S Patent, US2656508A, 1953.
dc.identifier.citedreferenceD. S. Talaga, J. Li, J. Am. Chem. Soc. 2009, 131, 9287.
dc.identifier.citedreferenceK. J. Freedman, M. Jürgens, A. Prabhu, C. W. Ahn, P. Jemth, J. B. Edel, M. J. Kim, Anal. Chem. 2011, 83, 5137.
dc.identifier.citedreferenceJ. W. Robertson, C. G. Rodrigues, V. M. Stanford, K. A. Rubinson, O. V. Krasilnikov, J. J. Kasianowicz, Proc. Natl. Acad. Sci. USA 2007, 104, 8207.
dc.identifier.citedreferenceF. Haque, J. Li, H.‐C. Wu, X.‐J. Liang, P. Guo, Nano Today 2013, 8, 56.
dc.identifier.citedreferenceM. Wanunu, Phys. Life Rev. 2012, 9, 125.
dc.identifier.citedreferenceB. M. Venkatesan, R. Bashir, Nat. Nanotechnol. 2011, 6, 615.
dc.identifier.citedreferenceH. P. J. Buermans, J. T. Den Dunnen, Biochim. Biophys. Acta,– Mol. Basis Dis. 2014, 1842, 1932.
dc.identifier.citedreferenceS. Howorka, Z. Siwy, Chem. Soc. Rev. 2009, 38, 2360.
dc.identifier.citedreferenceD. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard‐Cossa, M. Wanunu, M. Wiggin, J. A. Schloss, Nat. Biotechnol. 2008, 26, 1146.
dc.identifier.citedreferenceD. C. Golibersuch, Biophys. J. 1973, 13, 265.
dc.identifier.citedreferenceJ. J. Kasianowicz, S. E. Henrickson, H. H. Weetall, B. Robertson, Anal. Chem. 2001, 73, 2268.
dc.identifier.citedreferenceW. R. Smythe, Phys. Fluids 1964, 7, 633.
dc.identifier.citedreferenceH. Fricke, J. Appl. Phys. 1953, 24, 644.
dc.identifier.citedreferenceS. Velick, M. Gorin, J. Gen. Physiol. 1940, 23, 753.
dc.identifier.citedreferenceM. Mayer, E. Yusko, Google Patents, 2017.
dc.identifier.citedreferenceA. Ivankin, S. Carson, S. R. Kinney, M. Wanunu, J. Am. Chem. Soc. 2013, 135, 15350.
dc.identifier.citedreferenceJ. D. Uram, K. Ke, A. J. Hunt, M. Mayer, Angew. Chem., Int. Ed. 2006, 45, 2281.
dc.identifier.citedreferenceJ. D. Uram, M. Mayer, Biosens. Bioelectron. 2007, 22, 1556.
dc.identifier.citedreferenceW. Si, A. Aksimentiev, ACS Nano 2017, 11, 7091.
dc.identifier.citedreferenceM. D. Peraro, F. G. van der Goot, Nat. Rev. Microbiol. 2016, 14, 77.
dc.identifier.citedreferenceA. Fennouri, S. F. Mayer, T. B. H. Schroeder, M. Mayer, Biochim. Biophys. Acta, Biomembr. 2017, 1859, 2051.
dc.identifier.citedreferenceJ. Zlatanova, K. van Holde, Mol. Cell 2006, 24, 317.
dc.identifier.citedreferenceA. L. Demain, P. Vaishnav, Biotechnol. Adv. 2009, 27, 297.
dc.identifier.citedreferenceG. Huang, K. Willems, M. Soskine, C. Wloka, G. Maglia, Nat. Commun. 2017, 8, 935.
dc.identifier.citedreferenceC. Wloka, V. Van Meervelt, D. van Gelder, N. Danda, N. Jager, C. P. Williams, G. Maglia, ACS Nano 2017, 11, 4387.
dc.identifier.citedreferenceD. Wendell, P. Jing, J. Geng, V. Subramaniam, T. J. Lee, C. Montemagno, P. Guo, Nat. Nanotechnol. 2009, 4, 765.
dc.identifier.citedreferenceS. Howorka, S. Cheley, H. Bayley, Nat. Biotechnol. 2001, 19, 636.
dc.identifier.citedreferenceM. Soskine, A. Biesemans, M. De Maeyer, G. Maglia, J. Am. Chem. Soc. 2013, 135, 13456.
dc.identifier.citedreferenceS. M. Bezrukov, J. J. Kasianowicz, Phys. Rev. Lett. 1993, 70, 2352.
dc.identifier.citedreferenceJ. J. Kasianowicz, S. M. Bezrukov, Biophys. J. 1995, 69, 94.
dc.identifier.citedreferenceS. M. Bezrukov, I. Vodyanoy, R. A. Brutyan, J. J. Kasianowicz, Macromolecules 1996, 29, 8517.
dc.identifier.citedreferenceJ. J. Kasianowicz, J. W. F. Robertson, E. R. Chan, J. E. Reiner, V. M. Stanford, Annu. Rev. Anal. Chem. 2008, 1, 737.
dc.identifier.citedreferenceJ. J. Kasianowicz, E. Brandin, D. Branton, D. W. Deamer, Proc. Natl. Acad. Sci. USA 1996, 93, 13770.
dc.identifier.citedreferenceD. K. Lubensky, D. R. Nelson, Biophys. J. 1999, 77, 1824.
dc.identifier.citedreferenceR. A. Sharples, L. J. Vella, R. M. Nisbet, R. Naylor, K. Perez, K. J. Barnham, C. L. Masters, A. F. Hill, FASEB J. 2008, 22, 1469.
dc.identifier.citedreferenceL. Hong, T. M. Carducci, W. D. Bush, C. G. Dudzik, G. L. Millhauser, J. D. Simon, J. Phys. Chem. B 2010, 114, 11261.
dc.identifier.citedreferenceC. C. Curtain, F. E. Ali, D. G. Smith, A. I. Bush, C. L. Masters, K. J. Barnham, J. Biol. Chem. 2003, 278, 2977.
dc.identifier.citedreferenceG. Olivieri, G. Baysang, F. Meier, F. Müller‐Spahn, H. B. Stähelin, M. Brockhaus, C. H. Brack, J. Neurochem. 2001, 76, 224.
dc.identifier.citedreferenceR. I. Stefureac, C. A. Madampage, O. Andrievskaia, J. S. Lee, Biochem. Cell Biol. 2010, 88, 347.
dc.identifier.citedreferenceO. Tavassoly, J. S. Lee, FEBS Lett. 2012, 586, 3222.
dc.identifier.citedreferenceO. Tavassoly, J. Kakish, S. Nokhrin, O. Dmitriev, J. S. Lee, Eur. J. Med. Chem. 2014, 88, 42.
dc.identifier.citedreferenceA. Henning‐Knechtel, J. Knechtel, M. Magzoub, Nucleic Acids Res. 2017, 45, 12057.
dc.identifier.citedreferenceE. Spruijt, S. E. Tusk, H. Bayley, Nat. Nanotechnol. 2018, 13, 739.
dc.identifier.citedreferenceA. Oukhaled, B. Cressiot, L. Bacri, M. Pastoriza‐Gallego, J.‐M. Betton, E. Bourhis, R. Jede, J. Gierak, L. Auvray, J. Pelta, ACS Nano 2011, 5, 3628.
dc.identifier.citedreferenceJ. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, J. A. Golovchenko, Nature 2001, 412, 166.
dc.identifier.citedreferenceJ. Li, M. Gershow, D. Stein, E. Brandin, J. A. Golovchenko, Nat. Mater. 2003, 2, 611.
dc.identifier.citedreferenceA. Han, G. Schürmann, G. Mondin, R. A. Bitterli, N. G. Hegelbach, N. F. de Rooij, U. Staufer, Appl. Phys. Lett. 2006, 88, 093901.
dc.identifier.citedreferenceL.‐Q. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley, Nature 1999, 398, 686.
dc.identifier.citedreferenceA. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, C. Dekker, Nat. Mater. 2003, 2, 537.
dc.identifier.citedreferenceJ. Yang, D. C. Ferranti, L. A. Stern, C. A. Sanford, J. Huang, Z. Ren, L.‐C. Qin, A. R. Hall, Nanotechnology 2011, 22, 285310.
dc.identifier.citedreferenceL. J. Steinbock, J. F. Steinbock, A. Radenovic, Nano Lett. 2013, 13, 1717.
dc.identifier.citedreferenceL. J. de Vreede, A. van den Berg, J. C. Eijkel, Nano Lett. 2015, 15, 727.
dc.identifier.citedreferenceJ. B. Heng, V. Dimitrov, Y. V. Grinkova, C. Ho, T. Kim, D. Muller, S. Sligar, T. Sorsch, R. Twesten, R. Timp, G. Timp, IEEE Int. Electron Devices Meet. 2003, 32.2.1.
dc.identifier.citedreferenceM.‐H. Lee, A. Kumar, K.‐B. Park, S.‐Y. Cho, H.‐M. Kim, M.‐C. Lim, Y.‐R. Kim, K.‐B. Kim, Sci. Rep. 2015, 4, 7448.
dc.identifier.citedreferenceA. B. Farimani, K. Min, N. R. Aluru, ACS Nano 2014, 8, 7914.
dc.identifier.citedreferenceJ. Larkin, R. Henley, D. C. Bell, T. Cohen‐Karni, J. K. Rosenstein, M. Wanunu, ACS Nano 2013, 7, 10121.
dc.identifier.citedreferenceZ. S. Siwy, M. Davenport, Nat. Nanotechnol. 2010, 5, 697.
dc.identifier.citedreferenceC. Plesa, S. W. Kowalczyk, R. Zinsmeester, A. Y. Grosberg, Y. Rabin, C. Dekker, Nano Lett. 2013, 13, 658.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.