Show simple item record

Hepatic Sel1L‐Hrd1 ER‐associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH

dc.contributor.authorBhattacharya, Asmita
dc.contributor.authorSun, Shengyi
dc.contributor.authorWang, Heting
dc.contributor.authorLiu, Ming
dc.contributor.authorLong, Qiaoming
dc.contributor.authorYin, Lei
dc.contributor.authorKersten, Sander
dc.contributor.authorZhang, Kezhong
dc.contributor.authorQi, Ling
dc.date.accessioned2018-12-06T17:36:40Z
dc.date.available2020-01-06T16:41:00Zen
dc.date.issued2018-11-15
dc.identifier.citationBhattacharya, Asmita; Sun, Shengyi; Wang, Heting; Liu, Ming; Long, Qiaoming; Yin, Lei; Kersten, Sander; Zhang, Kezhong; Qi, Ling (2018). "Hepatic Sel1L‐Hrd1 ER‐associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH." The EMBO Journal 37(22): n/a-n/a.
dc.identifier.issn0261-4189
dc.identifier.issn1460-2075
dc.identifier.urihttps://hdl.handle.net/2027.42/146589
dc.description.abstractFibroblast growth factor 21 (Fgf21) is a liver‐derived, fasting‐induced hormone with broad effects on growth, nutrient metabolism, and insulin sensitivity. Here, we report the discovery of a novel mechanism regulating Fgf21 expression under growth and fasting‐feeding. The Sel1L‐Hrd1 complex is the most conserved branch of mammalian endoplasmic reticulum (ER)‐associated degradation (ERAD) machinery. Mice with liver‐specific deletion of Sel1L exhibit growth retardation with markedly elevated circulating Fgf21, reaching levels close to those in Fgf21 transgenic mice or pharmacological models. Mechanistically, we show that the Sel1L‐Hrd1 ERAD complex controls Fgf21 transcription by regulating the ubiquitination and turnover (and thus nuclear abundance) of ER‐resident transcription factor Crebh, while having no effect on the other well‐known Fgf21 transcription factor Pparα. Our data reveal a physiologically regulated, inverse correlation between Sel1L‐Hrd1 ERAD and Crebh‐Fgf21 levels under fasting‐feeding and growth. This study not only establishes the importance of Sel1L‐Hrd1 ERAD in the liver in the regulation of systemic energy metabolism, but also reveals a novel hepatic “ERAD‐Crebh‐Fgf21” axis directly linking ER protein turnover to gene transcription and systemic metabolic regulation.SynopsisNuclear receptor PPARα and transcription factor CREBH control FGF21 expression in the liver. The Sel1L‐Hrd1 ER‐associated degradation (ERAD) complex regulates FGF21 levels by controlling ubiquitination and turnover of CREBH under both fasting‐feeding and normal growth in mice.Liver‐specific SEL1L‐knockout mice exhibit growth retardation, increased insulin sensitivity, reduced adiposity, and resistance to diet‐induced obesity.Hepatic SEL1L deficiency induces FGF21 gene transcription and increases FGF21 circulating levels responsible for altered metabolic profile.ER‐resident transcription factor CREBH is a bona fide endogenous substrate of SEL1L‐HRD1 ERAD and links hepatic ERAD to FGF21 gene transcription.Hepatic ERAD‐Crebh‐Fgf21 axis regulate key metabolic states in mice.Conditional deletion of the ER‐associated degradation factor SEL1L in mouse livers alters key metabolic states in the whole organism via dysregulation of the FGF21 hepatokine.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherER quality control
dc.subject.othermetabolism
dc.subject.othergene transcription
dc.subject.otherFGF21
dc.subject.otherSel1L‐Hrd1 ERAD
dc.titleHepatic Sel1L‐Hrd1 ER‐associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146589/1/embj201899277-sup-0001-Appendix.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146589/2/embj201899277.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146589/3/embj201899277-sup-0002-EVFigs.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146589/4/embj201899277_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146589/5/embj201899277.reviewer_comments.pdf
dc.identifier.doi10.15252/embj.201899277
dc.identifier.sourceThe EMBO Journal
dc.identifier.citedreferenceSo JS, Hur KY, Tarrio M, Ruda V, Frank‐Kamenetsky M, Fitzgerald K, Koteliansky V, Lichtman AH, Iwawaki T, Glimcher LH, Lee AH ( 2012 ) Silencing of lipid metabolism genes through IRE1alpha‐mediated mRNA decay lowers plasma lipids in mice. Cell Metab 16: 487 – 499
dc.identifier.citedreferencePark JG, Xu X, Cho S, Hur KY, Lee MS, Kersten S, Lee AH ( 2016a ) CREBH‐FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep 6: 27938
dc.identifier.citedreferencePark JG, Xu X, Cho S, Lee AH ( 2016b ) Loss of transcription factor CREBH accelerates diet‐induced atherosclerosis in Ldlr −/− mice. Arterioscler Thromb Vasc Biol 36: 1772 – 1781
dc.identifier.citedreferencePotthoff MJ, Kliewer SA, Mangelsdorf DJ ( 2012 ) Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 26: 312 – 324
dc.identifier.citedreferenceQi L, Tsai B, Arvan P ( 2017 ) New insights into the physiological role of endoplasmic reticulum‐associated degradation. Trends Cell Biol 27: 430 – 440
dc.identifier.citedreferenceSchaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC ( 2013 ) Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 95: 692 – 699
dc.identifier.citedreferenceSha H, He Y, Chen H, Wang C, Zenno A, Shi H, Yang X, Zhang X, Qi L ( 2009 ) The IRE1alpha‐XBP1 pathway of the unfolded protein response is required for adipogenesis. Cell Metab 9: 556 – 564
dc.identifier.citedreferenceSha H, Sun S, Francisco AB, Ehrhardt N, Xue Z, Liu L, Lawrence P, Mattijssen F, Guber RD, Panhwar MS, Brenna JT, Shi H, Xue B, Kersten S, Bensadoun A, Peterfy M, Long Q, Qi L ( 2014 ) The ER‐associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab 20: 458 – 470
dc.identifier.citedreferenceShi G, Somlo D, Kim GH, Prescianotto‐Baschong C, Sun S, Beuret N, Long Q, Rutishauser J, Arvan P, Spiess M, Qi L ( 2017 ) ER‐associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J Clin Invest 127: 3897 – 3912
dc.identifier.citedreferenceZhao Y, Dunbar JD, Kharitonenkov A ( 2012 ) FGF21 as a therapeutic reagent. Adv Exp Med Biol 728: 214 – 228
dc.identifier.citedreferenceSun S, Xia S, Ji Y, Kersten S, Qi L ( 2012 ) The ATP‐P2X7 signaling axis is dispensable for obesity‐associated inflammasome activation in adipose tissue. Diabetes 61: 1471 – 1478
dc.identifier.citedreferenceSun S, Shi G, Han X, Francisco AB, Ji Y, Mendonca N, Liu X, Locasale JW, Simpson KW, Duhamel GE, Kersten S, Yates JR III, Long Q, Qi L ( 2014 ) Sel1L is indispensable for mammalian endoplasmic reticulum‐associated degradation, endoplasmic reticulum homeostasis, and survival. Proc Natl Acad Sci USA 111: E582 – E591
dc.identifier.citedreferenceSun S, Shi G, Sha H, Ji Y, Han X, Shu X, Ma H, Inoue T, Gao B, Kim H, Bu P, Guber RD, Shen X, Lee AH, Iwawaki T, Paton AW, Paton JC, Fang D, Tsai B, Yates Iii JR, et al ( 2015 ) IRE1a is an endogenous substrate of endoplasmic‐reticulum‐associated degradation. Nat Cell Biol 17: 1546 – 1555
dc.identifier.citedreferenceSun S, Louri R, Cohen SB, Ji Y, Goodrich JK, Poole AC, Ley RE, Denkers EY, Mcguckin MA, Long Q, Duhamel GE, Simpson KW, Qi L ( 2016 ) Epithelial Sel1L is required for the maintenance of intestinal homeostasis. Mol Biol Cell 27: 483 – 490
dc.identifier.citedreferenceVashistha N, Neal SE, Singh A, Carroll SM, Hampton RY ( 2016 ) Direct and essential function for Hrd3 in ER‐associated degradation. Proc Natl Acad Sci USA 113: 5934 – 5939
dc.identifier.citedreferenceVecchi C, Montosi G, Zhang K, Lamberti I, Duncan SA, Kaufman RJ, Pietrangelo A ( 2009 ) ER stress controls iron metabolism through induction of hepcidin. Science 325: 877 – 880
dc.identifier.citedreferenceWan XS, Lu XH, Xiao YC, Lin Y, Zhu H, Ding T, Yang Y, Huang Y, Zhang Y, Liu YL, Xu ZM, Xiao J, Li XK ( 2014 ) ATF4‐ and CHOP‐dependent induction of FGF21 through endoplasmic reticulum stress. Biomed Res Int 2014: 807874
dc.identifier.citedreferenceWu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, Wong PK, Chapman E, Fang D, Zhang DD ( 2014 ) Hrd1 suppresses Nrf2‐mediated cellular protection during liver cirrhosis. Genes Dev 28: 708 – 722
dc.identifier.citedreferenceXu X, Park JG, So JS, Hur KY, Lee AH ( 2014 ) Transcriptional regulation of apolipoprotein A‐IV by the transcription factor CREBH. J Lipid Res 55: 850 – 859
dc.identifier.citedreferenceXu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Melo‐Cardenas J, Zhang B, Zhang J, Song J, Zhang DD, Zhang J, Fan Y, Li H, Fang D ( 2016 ) The ER membrane‐anchored ubiquitin ligase Hrd1 is a positive regulator of T‐cell immunity. Nat Commun 7: 12073
dc.identifier.citedreferenceYagishita N, Ohneda K, Amano T, Yamasaki S, Sugiura A, Tsuchimochi K, Shin H, Kawahara K, Ohneda O, Ohta T, Tanaka S, Yamamoto M, Maruyama I, Nishioka K, Fukamizu A, Nakajima T ( 2005 ) Essential role of synoviolin in embryogenesis. J Biol Chem 280: 7909 – 7916
dc.identifier.citedreferenceYang L, Xue Z, He Y, Sun S, Chen H, Qi L ( 2010 ) A Phos‐tag‐based method reveals the extent of physiological endoplasmic reticulum stress. PLoS One 5: e11621
dc.identifier.citedreferenceYang H, Qiu Q, Gao B, Kong S, Lin Z, Fang D ( 2014 ) Hrd1‐mediated BLIMP‐1 ubiquitination promotes dendritic cell MHCII expression for CD4 T cell priming during inflammation. J Exp Med 211: 2467 – 2479
dc.identifier.citedreferenceZhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ ( 2006 ) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124: 587 – 599
dc.identifier.citedreferenceZhang K, Wang S, Malhotra J, Hassler JR, Back SH, Wang G, Chang L, Xu W, Miao H, Leonardi R, Chen YE, Jackowski S, Kaufman RJ ( 2011 ) The unfolded protein response transducer IRE1alpha prevents ER stress‐induced hepatic steatosis. EMBO J 30: 1357 – 1375
dc.identifier.citedreferenceZhang C, Wang G, Zheng Z, Maddipati KR, Zhang X, Dyson G, Williams P, Duncan SA, Kaufman RJ, Zhang K ( 2012a ) Endoplasmic reticulum‐tethered transcription factor cAMP responsive element‐binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 55: 1070 – 1082
dc.identifier.citedreferenceZhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, Xiao G, Potthoff MJ, Wei W, Wan Y, Yu RT, Evans RM, Kliewer SA, Mangelsdorf DJ ( 2012b ) The starvation hormone, fibroblast growth factor‐21, extends lifespan in mice. Elife 1: e00065
dc.identifier.citedreferenceZhu S, Ma L, Wu Y, Ye X, Zhang T, Zhang Q, Rasoul LM, Liu Y, Guo M, Zhou B, Ren G, Li D ( 2014 ) FGF21 treatment ameliorates alcoholic fatty liver through activation of AMPK‐SIRT1 pathway. Acta Biochim Biophys Sin 46: 1041 – 1048
dc.identifier.citedreferenceInagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA ( 2007 ) Endocrine regulation of the fasting response by PPARalpha‐mediated induction of fibroblast growth factor 21. Cell Metab 5: 415 – 425
dc.identifier.citedreferenceInagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA ( 2008 ) Inhibition of growth hormone signaling by the fasting‐induced hormone FGF21. Cell Metab 8: 77 – 83
dc.identifier.citedreferenceQi L, Yang L, Chen H ( 2011 ) Detecting and quantitating physiological endoplasmic reticulum stress. Meth Enzymol 490: 137 – 146
dc.identifier.citedreferenceBadman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos‐Flier E ( 2007 ) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5: 426 – 437
dc.identifier.citedreferenceBailey D, Barreca C, O’Hare P ( 2007 ) Trafficking of the bZIP transmembrane transcription factor CREB‐H into alternate pathways of ERAD and stress‐regulated intramembrane proteolysis. Traffic 8: 1796 – 1814
dc.identifier.citedreferenceBonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO, Acevedo MR, Walsh SA, Ornitz DM, Potthoff MJ ( 2017 ) FGF21 regulates metabolism through adipose‐dependent and ‐independent mechanisms. Cell Metab 25: 935 – 944.e4
dc.identifier.citedreferenceBookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA ( 2013 ) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19: 1147 – 1152
dc.identifier.citedreferenceChan CP, Mak TY, Chin KT, Ng IO, Jin DY ( 2010 ) N‐linked glycosylation is required for optimal proteolytic activation of membrane‐bound transcription factor CREB‐H. J Cell Sci 123: 1438 – 1448
dc.identifier.citedreferenceChau MD, Gao J, Yang Q, Wu Z, Gromada J ( 2010 ) Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK‐SIRT1‐PGC‐1alpha pathway. Proc Natl Acad Sci USA 107: 12553 – 12558
dc.identifier.citedreferenceDe Sousa‐Coelho AL, Marrero PF, Haro D ( 2012 ) Activating transcription factor 4‐dependent induction of FGF21 during amino acid deprivation. Biochem J 443: 165 – 171
dc.identifier.citedreferenceDe Sousa‐Coelho AL, Relat J, Hondares E, Perez‐Marti A, Ribas F, Villarroya F, Marrero PF, Haro D ( 2013 ) FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 54: 1786 – 1797
dc.identifier.citedreferenceFisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos‐Flier E, Spiegelman BM ( 2012 ) FGF21 regulates PGC‐1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26: 271 – 281
dc.identifier.citedreferenceFisher FM, Maratos‐Flier E ( 2016 ) Understanding the physiology of FGF21. Annu Rev Physiol 78: 223 – 241
dc.identifier.citedreferenceFrancisco AB, Singh R, Li S, Vani AK, Yang L, Munroe RJ, Diaferia G, Cardano M, Biunno I, Qi L, Schimenti JC, Long Q ( 2010 ) Deficiency of suppressor enhancer lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J Biol Chem 285: 13694 – 13703
dc.identifier.citedreferenceFujita H, Yagishita N, Aratani S, Saito‐Fujita T, Morota S, Yamano Y, Hansson MJ, Inazu M, Kokuba H, Sudo K, Sato E, Kawahara KI, Nakajima F, Hasegawa D, Higuchi I, Sato T, Araya N, Usui C, Nishioka K, Nakatani Y, et al ( 2015 ) The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC‐1beta. EMBO J 34: 1042 – 1055
dc.identifier.citedreferenceGuerriero CJ, Brodsky JL ( 2012 ) The delicate balance between secreted protein folding and endoplasmic reticulum‐associated degradation in human physiology. Physiol Rev 92: 537 – 576
dc.identifier.citedreferenceHondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F ( 2010 ) Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 11: 206 – 212
dc.identifier.citedreferenceHur KY, So JS, Ruda V, Frank‐Kamenetsky M, Fitzgerald K, Koteliansky V, Iwawaki T, Glimcher LH, Lee AH ( 2012 ) IRE1alpha activation protects mice against acetaminophen‐induced hepatotoxicity. J Exp Med 209: 307 – 318
dc.identifier.citedreferenceJi Y, Kim H, Yang L, Sha H, Roman CA, Long Q, Qi L ( 2016 ) The Sel1L‐Hrd1 endoplasmic reticulum‐associated degradation complex manages a key checkpoint in B cell development. Cell Rep 16: 2630 – 2640
dc.identifier.citedreferenceJiang S, Yan C, Fang QC, Shao ML, Zhang YL, Liu Y, Deng YP, Shan B, Liu JQ, Li HT, Yang L, Zhou J, Dai Z, Liu Y, Jia WP ( 2014 ) Fibroblast growth factor 21 is regulated by the IRE1alpha‐XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress‐induced hepatic steatosis. J Biol Chem 289: 29751 – 29765
dc.identifier.citedreferenceJurczak MJ, Lee AH, Jornayvaz FR, Lee HY, Birkenfeld AL, Guigni BA, Kahn M, Samuel VT, Glimcher LH, Shulman GI ( 2012 ) Dissociation of inositol‐requiring enzyme (IRE1alpha)‐mediated c‐Jun N‐terminal kinase activation from hepatic insulin resistance in conditional X‐box‐binding protein‐1 (XBP1) knock‐out mice. J Biol Chem 287: 2558 – 2567
dc.identifier.citedreferenceKharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB ( 2005 ) FGF‐21 as a novel metabolic regulator. J Clin Invest 115: 1627 – 1635
dc.identifier.citedreferenceKharitonenkov A, Adams AC ( 2014 ) Inventing new medicines: the FGF21 story. Mol Metab 3: 221 – 229
dc.identifier.citedreferenceKim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim DH, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, et al ( 2013a ) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19: 83 – 92
dc.identifier.citedreferenceKim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS ( 2013b ) Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 8: e63517
dc.identifier.citedreferenceKim H, Mendez R, Zheng Z, Chang L, Cai J, Zhang R, Zhang K ( 2014 ) Liver‐enriched transcription factor CREBH interacts with peroxisome proliferator‐activated receptor alpha to regulate metabolic hormone FGF21. Endocrinology 155: 769 – 782
dc.identifier.citedreferenceKim GH, Shi G, Somlo DRM, Haataja L, Soon S, Long Q, Nillni EA, Low MJ, Arvan P, Myers MG, Qi L ( 2018 ) Hypothalamic ER‐associated degradation regulates POMC maturation, feeding and age‐associated obesity. J Clin Invest 128: 1125 – 1140
dc.identifier.citedreferenceKong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo‐Cardenas J, Xu X, Gao B, Thorp EB, Zhang DD, Zhang B, Song J, Zhang K, Zhang J, Zhang J, Li H, Fang D ( 2016 ) Endoplasmic reticulum‐resident E3 ubiquitin ligase Hrd1 controls B‐cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci USA 113: 10394 – 10399
dc.identifier.citedreferenceLaeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD ( 2014 ) FGF21 is an endocrine signal of protein restriction. J Clin Invest 124: 3913 – 3922
dc.identifier.citedreferenceLajtha A, Latzkovits L, Toth J ( 1976 ) Comparison of turnover rates of proteins of the brain, liver and kidney in mouse in vivo following long term labeling. Biochim Biophys Acta 425: 511 – 520
dc.identifier.citedreferenceLee AH, Scapa EF, Cohen DE, Glimcher LH ( 2008 ) Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320: 1492 – 1496
dc.identifier.citedreferenceMehnert M, Sommermeyer F, Berger M, Kumar Lakshmipathy S, Gauss R, Aebi M, Jarosch E, Sommer T ( 2015 ) The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol Biol Cell 26: 185 – 194
dc.identifier.citedreferenceMueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL ( 2008 ) SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci USA 105: 12325 – 12330
dc.identifier.citedreferenceMurgatroyd C, Hoffmann A, Spengler D ( 2012 ) In vivo ChIP for the analysis of microdissected tissue samples. Methods Mol Biol 809: 135 – 148
dc.identifier.citedreferenceNakagawa Y, Satoh A, Yabe S, Furusawa M, Tokushige N, Tezuka H, Mikami M, Iwata W, Shingyouchi A, Matsuzaka T, Kiwata S, Fujimoto Y, Shimizu H, Danno H, Yamamoto T, Ishii K, Karasawa T, Takeuchi Y, Iwasaki H, Shimada M, et al ( 2014 ) Hepatic CREB3L3 controls whole‐body energy homeostasis and improves obesity and diabetes. Endocrinology 155: 4706 – 4719
dc.identifier.citedreferenceOlivares S, Henkel AS ( 2015 ) Hepatic Xbp1 gene deletion promotes endoplasmic reticulum stress‐induced liver injury and apoptosis. J Biol Chem 290: 30142 – 30151
dc.identifier.citedreferenceOmori Y, Imai J, Watanabe M, Komatsu T, Suzuki Y, Kataoka K, Watanabe S, Tanigami A, Sugano S ( 2001 ) CREB‐H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box‐B element with a liver‐specific expression. Nucleic Acids Res 29: 2154 – 2162
dc.identifier.citedreferenceOwen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, Kliewer SA, Mangelsdorf DJ ( 2014 ) FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 20: 670 – 677
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.