Show simple item record

Mutant MRPS5 affects mitoribosomal accuracy and confers stressâ related behavioral alterations

dc.contributor.authorAkbergenov, Rashid
dc.contributor.authorDuscha, Stefan
dc.contributor.authorFritz, Ann‐kristina
dc.contributor.authorJuskeviciene, Reda
dc.contributor.authorOishi, Naoki
dc.contributor.authorSchmitt, Karen
dc.contributor.authorShcherbakov, Dimitri
dc.contributor.authorTeo, Youjin
dc.contributor.authorBoukari, Heithem
dc.contributor.authorFreihofer, Pietro
dc.contributor.authorIsnard‐petit, Patricia
dc.contributor.authorOettinghaus, Björn
dc.contributor.authorFrank, Stephan
dc.contributor.authorThiam, Kader
dc.contributor.authorRehrauer, Hubert
dc.contributor.authorWesthof, Eric
dc.contributor.authorSchacht, Jochen
dc.contributor.authorEckert, Anne
dc.contributor.authorWolfer, David
dc.contributor.authorBöttger, Erik C
dc.date.accessioned2018-12-06T17:36:55Z
dc.date.available2020-01-06T16:41:00Zen
dc.date.issued2018-11
dc.identifier.citationAkbergenov, Rashid; Duscha, Stefan; Fritz, Ann‐kristina ; Juskeviciene, Reda; Oishi, Naoki; Schmitt, Karen; Shcherbakov, Dimitri; Teo, Youjin; Boukari, Heithem; Freihofer, Pietro; Isnard‐petit, Patricia ; Oettinghaus, Björn ; Frank, Stephan; Thiam, Kader; Rehrauer, Hubert; Westhof, Eric; Schacht, Jochen; Eckert, Anne; Wolfer, David; Böttger, Erik C (2018). "Mutant MRPS5 affects mitoribosomal accuracy and confers stressâ related behavioral alterations." EMBO reports 19(11): n/a-n/a.
dc.identifier.issn1469-221X
dc.identifier.issn1469-3178
dc.identifier.urihttps://hdl.handle.net/2027.42/146602
dc.description.abstractThe 1555 A to G substitution in mitochondrial 12S Aâ site rRNA is associated with maternally transmitted deafness of variable penetrance in the absence of otherwise overt disease. Here, we recapitulate the suggested A1555Gâ mediated pathomechanism in an experimental model of mitoribosomal mistranslation by directed mutagenesis of mitoribosomal protein MRPS5. We first establish that the ratio of cysteine/methionine incorporation and readâ through of mtDNAâ encoded MTâ CO1 protein constitute reliable measures of mitoribosomal misreading. Next, we demonstrate that human HEK293 cells expressing mutant V336Y MRPS5 show increased mitoribosomal mistranslation. As for immortalized lymphocytes of individuals with the pathogenic A1555G mutation, we find little changes in the transcriptome of mutant V336Y MRPS5 HEK cells, except for a coordinated upregulation of transcripts for cytoplasmic ribosomal proteins. Homozygous knockâ in mutant Mrps5 V338Y mice show impaired mitochondrial function and a phenotype composed of enhanced susceptibility to noiseâ induced hearing damage and anxietyâ related behavioral alterations. The experimental data in V338Y mutant mice point to a key role of mitochondrial translation and function in stressâ related behavioral and physiological adaptations.SynopsisAn experimental model of mitochondrial mistranslation based on the mutation V336Y in mitoribosomal protein MRPS5 recapitulates the suggested pathomechanism of the A1555G mutation in mitochondrial 12S rRNA.Accuracy of mitochondrial protein synthesis can be assessed by in organello translation of MTâ CO1.Mutation V336Y in MRPS5 confers mitoribosomal misreading.MRPS5 V336Y knockâ in mice reproduce the hearingâ related deficit in the absence of nonâ cochlear pathology that characterizes the A1555G mutation.Further assessment of the in vivo model points to a key role for mitochondrial function in behavioral and physiological adaptations.Mitochondrial mistranslation due to mutations in the mitochondrial 12S rRNA was proposed to cause hearing deficits. This study establishes a mouse model for mitochondrial mistranslation based on mutation of the mitoribosomal protein MRPS5, which recapitulates the suggested pathomechanism of the A1555G 12S rRNA mutation.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraging
dc.subject.otherdisease
dc.subject.othermisreading
dc.subject.othermitochondria
dc.subject.otherprotein synthesis
dc.titleMutant MRPS5 affects mitoribosomal accuracy and confers stressâ related behavioral alterations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146602/1/embr201846193-sup-0001-Appendix.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146602/2/embr201846193_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146602/3/embr201846193.reviewer_comments.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146602/4/embr201846193.pdf
dc.identifier.doi10.15252/embr.201846193
dc.identifier.sourceEMBO reports
dc.identifier.citedreferenceMatt T, Ng CL, Lang K, Sha SH, Akbergenov R, Shcherbakov D, Meyer M, Duscha S, Xie J, Dubbaka SR et al ( 2012 ) Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4â monosubstituted 2â deoxystreptamine apramycin. Proc Natl Acad Sci USA 109: 10984 â 10989
dc.identifier.citedreferenceEinat H, Yuan P, Manji HK ( 2005 ) Increased anxietyâ like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bclâ 2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 165: 172 â 180
dc.identifier.citedreferenceHollis F, van der Kooij MA, Zanoletti O, Lozano L, Canto C, Sandi C ( 2015 ) Mitochondrial function in the brain links anxiety with social subordination. Proc Natl Acad Sci USA 112: 15486 â 15491
dc.identifier.citedreferenceBitnerâ Glindzicz M, Pembrey M, Duncan A, Heron J, Ring SM, Hall A, Rahman S ( 2009 ) Prevalence of mitochondrial 1555Aâ >G mutation in European children. N Engl J Med 360: 640 â 642
dc.identifier.citedreferenceBravo O, Ballana E, Estivill X ( 2006 ) Cochlear alterations in deaf and unaffected subjects carrying the deafnessâ associated A1555G mutation in the mitochondrial 12S rRNA gene. Biochem Biophys Res Commun 344: 511 â 516
dc.identifier.citedreferenceVicenteâ Torres MA, Schacht J ( 2006 ) A BAD link to mitochondrial cell death in the cochlea of mice with noiseâ induced hearing loss. J Neurosci Res 83: 1564 â 1572
dc.identifier.citedreferenceChen FQ, Zheng HW, Hill K, Sha SH ( 2012 ) Traumatic noise activates Rhoâ family GTPases through transient cellular energy depletion. J Neurosci 32: 12421 â 12430
dc.identifier.citedreferenceBykhovskaya Y, Mengesha E, Fischelâ Ghodsian N ( 2009 ) Phenotypic expression of maternally inherited deafness is affected by RNA modification and cytoplasmic ribosomal proteins. Mol Genet Metab 97: 297 â 304
dc.identifier.citedreferenceGoto Y, Nonaka I, Horai S ( 1990 ) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348: 651 â 653
dc.identifier.citedreferenceRuizâ Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC ( 2007 ) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35: D823 â D828
dc.identifier.citedreferenceOgle JM, Ramakrishnan V ( 2005 ) Structural insights into translational fidelity. Annu Rev Biochem 74: 129 â 177
dc.identifier.citedreferenceHobbie SN, Kalapala SK, Akshay S, Bruell C, Schmidt S, Dabow S, Vasella A, Sander P, Böttger EC ( 2007 ) Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria. Nucleic Acids Res 35: 6086 â 6093
dc.identifier.citedreferenceHobbie SN, Pfister P, Brull C, Westhof E, Böttger EC ( 2005 ) Analysis of the contribution of individual substituents in 4,6â aminoglycosideâ ribosome interaction. Antimicrob Agents Chemother 49: 5112 â 5118
dc.identifier.citedreferenceSawitzke JA, Costantino N, Li XT, Thomason LC, Bubunenko M, Court C, Court DL ( 2011 ) Probing cellular processes with oligoâ mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol 407: 45 â 59
dc.identifier.citedreferenceBruell CM, Eichholz C, Kubarenko A, Post V, Katunin VI, Hobbie SN, Rodnina MV, Böttger EC ( 2008 ) Conservation of bacterial protein synthesis machinery: initiation and elongation in Mycobacterium smegmatis. Biochemistry 47: 8828 â 8839
dc.identifier.citedreferenceHobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D, Böttger EC ( 2008 ) Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA 105: 20888 â 20893
dc.identifier.citedreferenceDuscha S, Boukari H, Shcherbakov D, Salian S, Silva S, Kendall A, Kato T, Akbergenov R, Perezâ Fernandez D, Bernet B et al ( 2014 ) Identification and evaluation of improved 4â ²â Oâ (alkyl) 4,5â disubstituted 2â deoxystreptamines as nextâ generation aminoglycoside antibiotics. MBio 5: e01827 â 14
dc.identifier.citedreferenceLivak KJ, Schmittgen TD ( 2001 ) Analysis of relative gene expression data using realâ time quantitative PCR and the 2(â Delta Delta C(T)) method. Methods 25: 402 â 408
dc.identifier.citedreferenceVenegas V, Halberg MC ( 2012 ) Measurement of mitochondrial DNA copy number. Methods Mol Biol 837: 327 â 335
dc.identifier.citedreferencePallotti F, Lenaz G ( 2001 ) Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol 65: 1 â 35
dc.identifier.citedreferenceMcKee EE, Grier BL, Thompson GS, McCourt JD ( 1990 ) Isolation and incubation conditions to study heart mitochondrial protein synthesis. Am J Physiol 258: E492 â E502
dc.identifier.citedreferenceFernándezâ Silva P, Acínâ Pérez R, Fernándezâ Vizarra E, Pérezâ Martos A, Enriquez JA ( 2007 ) In vivo and in organello analyses of mitochondrial translation. Methods Cell Biol 80: 571 â 588
dc.identifier.citedreferenceMcKee EE, Ferguson M, Bentley AT, Marks TA ( 2006 ) Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother 50: 2042 â 2049
dc.identifier.citedreferenceSchnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB ( 2003 ) A directional strategy for monitoring Creâ mediated recombination at the cellular level in the mouse. Nat Biotechnol 21: 562 â 565
dc.identifier.citedreferenceLangmead B, Salzberg SL ( 2012 ) Fast gappedâ read alignment with Bowtie 2. Nat Methods 9: 357 â 359
dc.identifier.citedreferenceLi B, Dewey CN ( 2011 ) RSEM: accurate transcript quantification from RNAâ Seq data with or without a reference genome. BMC Bioinformatics 12: 323
dc.identifier.citedreferenceRobinson MD, McCarthy DJ, Smyth GK ( 2010 ) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139 â 140
dc.identifier.citedreferenceChen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A ( 2013 ) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14: 128
dc.identifier.citedreferenceSupek F, Bosnjak M, Skunca N, Smuc T ( 2011 ) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6: e21800
dc.identifier.citedreferenceOettinghaus B, Schulz JM, Restelli LM, Licci M, Savoia C, Schmidt A, Schmitt K, Grimm A, More L, Hench J et al ( 2016 ) Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons. Cell Death Differ 23: 18 â 28
dc.identifier.citedreferenceRhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Drose S, Brandt U et al ( 2009 ) Amyloidâ beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci USA 106: 20057 â 20062
dc.identifier.citedreferenceVannoni E, Voikar V, Colacicco G, Sanchez MA, Lipp HP, Wolfer DP ( 2014 ) Spontaneous behavior in the social homecage discriminates strains, lesions and mutations in mice. J Neurosci Methods 234: 26 â 37
dc.identifier.citedreferenceWeyer SW, Klevanski M, Delekate A, Voikar V, Aydin D, Hick M, Filippov M, Drost N, Schaller KL, Saar M et al ( 2011 ) APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J 30: 2266 â 2280
dc.identifier.citedreferenceMadani R, Kozlov S, Akhmedov A, Cinelli P, Kinter J, Lipp HP, Sonderegger P, Wolfer DP ( 2003 ) Impaired explorative behavior and neophobia in genetically modified mice lacking or overexpressing the extracellular serine protease inhibitor neuroserpin. Mol Cell Neurosci 23: 473 â 494
dc.identifier.citedreferenceTremml P, Lipp HP, Muller U, Ricceri L, Wolfer DP ( 1998 ) Neurobehavioral development, adult openfield exploration and swimming navigation learning in mice with a modified betaâ amyloid precursor protein gene. Behav Brain Res 95: 65 â 76
dc.identifier.citedreferenceDeacon RM ( 2006 ) Assessing nest building in mice. Nat Protoc 1: 1117 â 1119
dc.identifier.citedreferenceDeacon RM ( 2006 ) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1: 118 â 121
dc.identifier.citedreferenceDeacon RM, Rawlins JN ( 2006 ) Tâ maze alternation in the rodent. Nat Protoc 1: 7 â 12
dc.identifier.citedreferenceTemperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowskaâ Lightowlers ZM ( 2010 ) Hungry codons promote frameshifting in human mitochondrial ribosomes. Science 327: 301
dc.identifier.citedreferenceScheffler IE ( 2001 ) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1: 3 â 31
dc.identifier.citedreferenceBibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA ( 1981 ) Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167 â 180
dc.identifier.citedreferenceAnderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F et al ( 1981 ) Sequence and organization of the human mitochondrial genome. Nature 290: 457 â 465
dc.identifier.citedreferenceSagan L ( 1967 ) On the origin of mitosing cells. J Theor Biol 14: 255 â 274
dc.identifier.citedreferenceGreber BJ, Ban N ( 2016 ) Structure and function of the mitochondrial ribosome. Annu Rev Biochem 85: 103 â 132
dc.identifier.citedreferenceChristian BE, Spremulli LL ( 2012 ) Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 1819: 1035 â 1054
dc.identifier.citedreferenceSharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK ( 2003 ) Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115: 97 â 108
dc.identifier.citedreferenceNeupert W, Herrmann JM ( 2007 ) Translocation of proteins into mitochondria. Annu Rev Biochem 76: 723 â 749
dc.identifier.citedreferenceChacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N ( 2009 ) Importing mitochondrial proteins: machineries and mechanisms. Cell 138: 628 â 644
dc.identifier.citedreferenceSzklarczyk R, Huynen MA ( 2010 ) Mosaic origin of the mitochondrial proteome. Proteomics 10: 4012 â 4024
dc.identifier.citedreferenceChinnery PF ( 2015 ) Mitochondrial disease in adults: what’s old and what’s new? EMBO Mol Med 7: 1503 â 1512
dc.identifier.citedreferenceAlston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW ( 2017 ) The genetics and pathology of mitochondrial disease. J Pathol 241: 236 â 250
dc.identifier.citedreferencePrezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, Rotter JI et al ( 1993 ) Mitochondrial ribosomal RNA mutation associated with both antibioticâ induced and nonâ syndromic deafness. Nat Genet 4: 289 â 294
dc.identifier.citedreferenceFischelâ Ghodsian N ( 1999 ) Mitochondrial deafness mutations reviewed. Hum Mutat 13: 261 â 270
dc.identifier.citedreferenceGuan MX, Fischelâ Ghodsian N, Attardi G ( 2001 ) Nuclear background determines biochemical phenotype in the deafnessâ associated mitochondrial 12S rRNA mutation. Hum Mol Genet 10: 573 â 580
dc.identifier.citedreferenceRaimundo N, Song L, Shutt TE, McKay SE, Cotney J, Guan MX, Gilliland TC, Hohuan D, Santosâ Sacchi J, Shadel GS ( 2012 ) Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell 148: 716 â 726
dc.identifier.citedreferenceO’Sullivan M, Rutland P, Lucas D, Ashton E, Hendricks S, Rahman S, Bitnerâ Glindzicz M ( 2015 ) Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum Mol Genet 24: 1036 â 1044
dc.identifier.citedreferenceLee S, Rose S, Metodiev MD, Becker L, Vernaleken A, Klopstock T, Gailusâ Durner V, Fuchs H, HrabÄ De Angelis M, Douthwaite S et al ( 2015 ) Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing. Hum Mol Genet 24: 7286 â 7294
dc.identifier.citedreferenceHobbie SN, Bruell CM, Akshay S, Kalapala SK, Shcherbakov D, Böttger EC ( 2008 ) Mitochondrial deafness alleles confer misreading of the genetic code. Proc Natl Acad Sci USA 105: 3244 â 3249
dc.identifier.citedreferenceScheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, Muravina TI, Serkov SV, Uziel G, Bugiani M et al ( 2007 ) Mitochondrial aspartylâ tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39: 534 â 539
dc.identifier.citedreferenceKonovalova S, Tyynismaa H ( 2013 ) Mitochondrial aminoacylâ tRNA synthetases in human disease. Mol Genet Metab 108: 206 â 211
dc.identifier.citedreferenceSissler M, Gonzálezâ Serrano LE, Westhof E ( 2017 ) Recent advances in mitochondrial aminoacylâ tRNA synthetases and disease. Trends Mol Med 23: 693 â 708
dc.identifier.citedreferenceSynetos D, Frantziou CP, Alksne LE ( 1996 ) Mutations in yeast ribosomal proteins S28 and S4 affect the accuracy of translation and alter the sensitivity of the ribosomes to paromomycin. Biochem Biophys Acta 1309: 156 â 166
dc.identifier.citedreferenceGreber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N ( 2015 ) Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348: 303 â 308
dc.identifier.citedreferenceAmunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V ( 2015 ) Ribosome. The structure of the human mitochondrial ribosome. Science 348: 95 â 98
dc.identifier.citedreferencePatananan AN, Wu TH, Chiou PY, Teitell MA ( 2016 ) Modifying the mitochondrial genome. Cell Metab 23: 785 â 796
dc.identifier.citedreferenceZheng QY, Johnson KR, Erway LC ( 1999 ) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130: 94 â 107
dc.identifier.citedreferenceBöttger EC, Schacht J ( 2013 ) The mitochondrion: a perpetrator of acquired hearing loss. Hear Res 303: 12 â 19
dc.identifier.citedreferencePrenderville JA, Kennedy PJ, Dinan TG, Cryan JF ( 2015 ) Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci 38: 13 â 25
dc.identifier.citedreferenceMata R, Wilke A, Czienskowski U ( 2013 ) Foraging across the life span: is there a reduction in exploration with aging? Front Neurosci 7: 53
dc.identifier.citedreferencePerna G, Iannone G, Alciati A, Caldirola D ( 2016 ) Are anxiety disorders associated with accelerated aging? A focus on neuroprogression. Neural Plast 2016: 8457612
dc.identifier.citedreferenceBeaudreau SA, O’Hara R ( 2008 ) Lateâ life anxiety and cognitive impairment: a review. Am J Geriatr Psychiatry 16: 790 â 803
dc.identifier.citedreferenceHovatta I, Tennant RS, Helton R, Marr RA, Singer O, Redwine JM, Ellison JA, Schadt EE, Verma IM, Lockhart DJ et al ( 2005 ) Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438: 662 â 666
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.