Show simple item record

Developments in the field of allergy in 2017 through the eyes of Clinical and Experimental Allergy

dc.contributor.authorRoberts, G.
dc.contributor.authorAlmqvist, C.
dc.contributor.authorBoyle, R.
dc.contributor.authorCrane, J.
dc.contributor.authorHogan, S. P.
dc.contributor.authorMarsland, B.
dc.contributor.authorSaglani, S.
dc.contributor.authorWoodfolk, J. A.
dc.date.accessioned2018-12-06T17:37:19Z
dc.date.available2020-01-09T19:40:13Zen
dc.date.issued2018-12
dc.identifier.citationRoberts, G.; Almqvist, C.; Boyle, R.; Crane, J.; Hogan, S. P.; Marsland, B.; Saglani, S.; Woodfolk, J. A. (2018). "Developments in the field of allergy in 2017 through the eyes of Clinical and Experimental Allergy." Clinical & Experimental Allergy 48(12): 1606-1621.
dc.identifier.issn0954-7894
dc.identifier.issn1365-2222
dc.identifier.urihttps://hdl.handle.net/2027.42/146621
dc.publisherWiley Periodicals, Inc.
dc.titleDevelopments in the field of allergy in 2017 through the eyes of Clinical and Experimental Allergy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146621/1/cea13318.pdf
dc.identifier.doi10.1111/cea.13318
dc.identifier.sourceClinical & Experimental Allergy
dc.identifier.citedreferencePerkin MR, Lack G. Introducing allergenic foods in infants. N Engl J Med. 2016; 375: e16.
dc.identifier.citedreferenceAl‐Khami AA, Ghonim MA, Del Valle L, et al. Fuelling the mechanisms of asthma: increased fatty acid oxidation in inflammatory immune cells may represent a novel therapeutic target. Clin Exp Allergy. 2017; 47: 1170 ‐ 1184.
dc.identifier.citedreferenceGon Y, Maruoka S, Inoue T, et al. Selective release of miRNAs via extracellular vesicles is associated with house‐dust mite allergen‐induced airway inflammation. Clin Exp Allergy. 2017; 47: 1586 ‐ 1598.
dc.identifier.citedreferenceLewis A, MacGlashan Jr DW, Suvarna SK, Peachell PT. Recovery from desensitization of IgE‐dependent responses in human lung mast cells. Clin Exp Allergy. 2017; 47: 1022 ‐ 1031.
dc.identifier.citedreferenceSalamon P, Shefler I, Moshkovits I, et al. IL‐33 and IgE stimulate mast cell production of IL‐2 and regulatory T cell expansion in allergic dermatitis. Clin Exp Allergy. 2017; 47: 1409 ‐ 1416.
dc.identifier.citedreferenceRo AD, Simpson MR, Ro TB, et al. Reduced Th22 cell proportion and prevention of atopic dermatitis in infants following maternal probiotic supplementation. Clin Exp Allergy. 2017; 47: 1014 ‐ 1021.
dc.identifier.citedreferenceCianferoni A, Saltzman R, Saretta F, et al. Invariant natural killer cells change after an oral allergy desensitization protocol for cow’s milk. Clin Exp Allergy. 2017; 47: 1390 ‐ 1397.
dc.identifier.citedreferenceGomez F, Bogas G, Gonzalez M, et al. The clinical and immunological effects of Pru p 3 sublingual immunotherapy on peach and peanut allergy in patients with systemic reactions. Clin Exp Allergy. 2017; 47: 339 ‐ 350.
dc.identifier.citedreferencePham DL, Ban G‐Y, Kim S‐H, et al. Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin Exp Allergy. 2017; 47: 57 ‐ 70.
dc.identifier.citedreferenceKowal K, Gielicz A, Sanak M. The effect of allergen‐induced bronchoconstriction on concentration of 5‐oxo–ETE in exhaled breath condensate of house dust mite‐allergic patients. Clin Exp Allergy. 2017; 47: 1253 ‐ 1262.
dc.identifier.citedreferenceHarnan SE, Essat M, Gomersall T, et al. Exhaled nitric oxide in the diagnosis of asthma in adults: a systematic review. Clin Exp Allergy. 2017; 47: 410 ‐ 429.
dc.identifier.citedreferenceTrikojat K, Buske‐Kirschbaum A, Plessow F, Schmitt J, Fischer R. Memory and multitasking performance during acute allergic inflammation in seasonal allergic rhinitis. Clin Exp Allergy. 2017; 47: 479 ‐ 487.
dc.identifier.citedreferenceGulen T, Moller Westerberg C, Lyberg K, et al. Assessment of in vivo mast cell reactivity in patients with systemic mastocytosis. Clin Exp Allergy. 2017; 47: 909 ‐ 917.
dc.identifier.citedreferenceOseroff C, Christensen LH, Westernberg L, et al. Immunoproteomic analysis of house dust mite antigens reveals distinct classes of dominant T cell antigens according to function and serological reactivity. Clin Exp Allergy. 2017; 47: 577 ‐ 592.
dc.identifier.citedreferenceZimmer J, Doring S, Strecker D, et al. Minor allergen patterns in birch pollen allergen products – a question of pollen? Clin Exp Allergy. 2017; 47: 1079 ‐ 1091.
dc.identifier.citedreferenceSmiljanic K, Apostolovic D, Trifunovic S, et al. Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study. Clin Exp Allergy. 2017; 47: 815 ‐ 828.
dc.identifier.citedreferenceGroh N, von Loetzen CS, Subbarayal B, et al. IgE and allergen‐specific immunotherapy‐induced IgG 4 recognize similar epitopes of Bet v 1, the major allergen of birch pollen. Clin Exp Allergy. 2017; 47: 693 ‐ 703.
dc.identifier.citedreferenceMindaye ST, Spiric J, David NA, Rabin RL, Slater JE. Accurate quantification of 5 German cockroach (GCr) allergens in complex extracts using multiple reaction monitoring mass spectrometry (MRM MS). Clin Exp Allergy. 2017; 47: 1661 ‐ 1670.
dc.identifier.citedreferencePolley DJ, Mihara K, Ramachandran R, et al. Cockroach allergen serine proteinases: isolation, sequencing and signalling via proteinase‐activated receptor‐2. Clin Exp Allergy. 2017; 47: 946 ‐ 960.
dc.identifier.citedreferenceWanandy T, Dwyer HE, McLean L, et al. Factors influencing the quality of Myrmecia pilosula (Jack Jumper) ant venom for use in in vitro and in vivo diagnoses of allergen sensitization and in allergen immunotherapy. Clin Exp Allergy. 2017; 47: 1478 ‐ 1490.
dc.identifier.citedreferenceZurzolo GA, Peters RL, Koplin JJ, et al. The practice and perception of precautionary allergen labelling by the Australasian food manufacturing industry. Clin Exp Allergy. 2017; 47: 961 ‐ 968.
dc.identifier.citedreferenceVillasenor A, Rosace D, Obeso D, et al. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy. 2017; 47: 442 ‐ 456.
dc.identifier.citedreferenceBan GY, Cho K, Kim SH, et al. Metabolomic analysis identifies potential diagnostic biomarkers for aspirin‐exacerbated respiratory disease. Clin Exp Allergy. 2017; 47: 37 ‐ 47.
dc.identifier.citedreferenceBrinkman P, van de Pol MA, Gerritsen MG, et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin Exp Allergy. 2017; 47: 1159 ‐ 1169.
dc.identifier.citedreferenceBarreto‐Luis A, Corrales A, Acosta‐Herrera M, et al. A pathway‐based association study reveals variants from Wnt signalling genes contributing to asthma susceptibility. Clin Exp Allergy. 2017; 47: 618 ‐ 626.
dc.identifier.citedreferenceRobinson D, Humbert M, Buhl R, et al. Revisiting Type 2‐high and Type 2‐low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017; 47: 161 ‐ 175.
dc.identifier.citedreferenceSaranz RJ, Lozano A, Lozano NA, Ponzio MF, Cruz AA. Subclinical lower airways correlates of chronic allergic and non‐allergic rhinitis. Clin Exp Allergy. 2017; 47: 988 ‐ 997.
dc.identifier.citedreferenceWinnica D, Que LG, Baffi C, et al. l ‐citrulline prevents asymmetric dimethylarginine‐mediated reductions in nitric oxide and nitrosative stress in primary human airway epithelial cells. Clin Exp Allergy. 2017; 47: 190 ‐ 199.
dc.identifier.citedreferenceLachowicz‐Scroggins ME, Finkbeiner WE, Gordon ED, et al. Corticosteroid and long‐acting β‐agonist therapy reduces epithelial goblet cell metaplasia. Clin Exp Allergy. 2017; 47: 1534 ‐ 1545.
dc.identifier.citedreferenceRao SS, Mu Q, Zeng Y, et al. Calpain‐activated mTORC2/Akt pathway mediates airway smooth muscle remodelling in asthma. Clin Exp Allergy. 2017; 47: 176 ‐ 189.
dc.identifier.citedreferenceLow K, Ruane L, Uddin N, et al. Abnormal vocal cord movement in patients with and without airway obstruction and asthma symptoms. Clin Exp Allergy. 2017; 47: 200 ‐ 207.
dc.identifier.citedreferenceDavies BR, Gilchrist FJ, Saunders A, Carroll WD. Annual hospitalization rates for children with asthma are inversely associated with total hours of sunshine in English regions. Clin Exp Allergy. 2017; 47: 838 ‐ 840.
dc.identifier.citedreferenceJust J, Bourgoin‐Heck M, Amat F. Clinical phenotypes in asthma during childhood. Clin Exp Allergy. 2017; 47: 848 ‐ 855.
dc.identifier.citedreferenceWoolnough KF, Richardson M, Newby C, et al. The relationship between biomarkers of fungal allergy and lung damage in asthma. Clin Exp Allergy. 2017; 47: 48 ‐ 56.
dc.identifier.citedreferenceHirai K, Shirai T, Suzuki M, et al. A clustering approach to identify and characterize the asthma and chronic obstructive pulmonary disease overlap phenotype. Clin Exp Allergy. 2017; 47: 1374 ‐ 1382.
dc.identifier.citedreferenceSaito N, Kamata A, Itoga M, Tamaki M, Kayaba H, Ritz T. Assessment of biological, psychological and adherence factors in the prediction of step‐down treatment for patients with well‐controlled asthma. Clin Exp Allergy. 2017; 47: 467 ‐ 478.
dc.identifier.citedreferenceBjerregaard A, Laing IA, Backer V, et al. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus‐induced exacerbations: a prospective cohort study. Clin Exp Allergy. 2017; 47: 1007 ‐ 1013.
dc.identifier.citedreferenceSousa AR, Marshall RP, Warnock LC, et al. Responsiveness to oral prednisolone in severe asthma is related to the degree of eosinophilic airway inflammation. Clin Exp Allergy. 2017; 47: 890 ‐ 899.
dc.identifier.citedreferenceWeatherburn CJ, Guthrie B, Mercer SW, Morales DR. Comorbidities in adults with asthma: population‐based cross‐sectional analysis of 1.4 million adults in Scotland. Clin Exp Allergy. 2017; 47: 1246 ‐ 1252.
dc.identifier.citedreferenceJabbal S, Manoharan A, Lipworth BJ. Bronchoprotective tolerance with indacaterol is not modified by concomitant tiotropium in persistent asthma. Clin Exp Allergy. 2017; 47: 1239 ‐ 1245.
dc.identifier.citedreferenceChang HY, Seo J‐H, Kwon J‐W, et al. Independent association among suicidal ideation, asthma, and bronchial hyperresponsiveness in adolescents. Clin Exp Allergy. 2017; 47: 1671 ‐ 1674.
dc.identifier.citedreferenceCabon Y, Molinari N, Marin G, et al. Comparison of anti‐interleukin‐5 therapies in patients with severe asthma: global and indirect meta‐analyses of randomized placebo‐controlled trials. Clin Exp Allergy. 2017; 47: 129 ‐ 138.
dc.identifier.citedreferenceAhlrothPind C, Gunnbjornsdottir M, Bjerg A, et al. Patient‐reported signs of dampness at home may be a risk factor for chronic rhinosinusitis: a cross‐sectional study. Clin Exp Allergy. 2017; 47: 1383 ‐ 1389.
dc.identifier.citedreferenceDe Schryver E, Derycke L, Campo P, et al. Alcohol hyper‐responsiveness in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2017; 47: 245 ‐ 253.
dc.identifier.citedreferencePfaar O, Hohlfeld JM, Al‐Kadah B, et al. Dose‐response relationship of a new Timothy grass pollen allergoid in comparison with a 6‐grass pollen allergoid. Clin Exp Allergy. 2017; 47: 1445 ‐ 1455.
dc.identifier.citedreferenceGrouin J‐M, Vicaut E, Devillier P. Comparison of scores associating symptoms and rescue medication use for evaluating the efficacy of allergy immunotherapy in seasonal allergic rhinoconjunctivitis: results from five trials. Clin Exp Allergy. 2017; 47: 254 ‐ 263.
dc.identifier.citedreferenceEllis AK, Tsitoura DC, Quint D, Powley W, Lee LA. Safety and pharmacodynamics of intranasal GSK2245035, a TLR7 agonist for allergic rhinitis: a randomized trial. Clin Exp Allergy. 2017; 47: 1193 ‐ 1203.
dc.identifier.citedreferenceBerings M, Jult A, Vermeulen H, et al. Probiotics‐impregnated bedding covers for house dust mite allergic rhinitis: a pilot randomized clinical trial. Clin Exp Allergy. 2017; 47: 1092 ‐ 1096.
dc.identifier.citedreferenceEgner W, Cook T, Harper N,, et al. Specialist perioperative allergy clinic services in the UK 2016: results from the Royal College of Anaesthetists Sixth National Audit Project. Clin Exp Allergy. 2016; 47: 1318 ‐ 1330.
dc.identifier.citedreferenceMotomura C, Matsuzaki H, Ono R, et al. Aspirin is an enhancing factor for food‐dependent exercise‐induced anaphylaxis in children. Clin Exp Allergy. 2017; 47: 1497 ‐ 1500.
dc.identifier.citedreferenceKim SR, Lee JH, Park KH, Park HJ, Park JW. Varied incidence of immediate adverse reactions to low‐osmolar non‐ionic iodide radiocontrast media used in computed tomography. Clin Exp Allergy. 2017; 47: 106 ‐ 112.
dc.identifier.citedreferenceZanoni G, Zanotti R, Schena D, Sabbadini C, Opri R, Bonadonna P. Vaccination management in children and adults with mastocytosis. Clin Exp Allergy. 2017; 47: 593 ‐ 596.
dc.identifier.citedreferenceStretz E, Oppel EM, Rawer HC, et al. Overcoming severe adverse reactions to venom immunotherapy using anti‐IgE antibodies in combination with a high maintenance dose. Clin Exp Allergy. 2017; 47: 1631 ‐ 1639.
dc.identifier.citedreferenceFoong RX, Brough H. The role of environmental exposure to peanut in the development of clinical allergy to peanut. Clin Exp Allergy. 2017; 47: 1232 ‐ 1238.
dc.identifier.citedreferenceStephen JN, Sharp MF, Ruethers T, Taki A, Campbell DE, Lopata AL. Allergenicity of bony and cartilaginous fish – molecular and immunological properties. Clin Exp Allergy. 2017; 47: 300 ‐ 312.
dc.identifier.citedreferenceDeschildre A, Lejeune S, Cap M, et al. Food allergy phenotypes: the key to personalized therapy. Clin Exp Allergy. 2017; 47: 1125 ‐ 1137.
dc.identifier.citedreferenceStensgaard A, Bindslev‐Jensen C, Nielsen D, Munch M, DunnGalvin A. Quality of life in childhood, adolescence and adult food allergy: patient and parent perspectives. Clin Exp Allergy. 2017; 47: 530 ‐ 539.
dc.identifier.citedreferencevan der Valk JP, Gerth van Wijk R, Vergouwe Y, et al. sIgE Ana o 1, 2 and,3 accurately distinguish tolerant from allergic children sensitized to cashew nuts. Clin Exp Allergy. 2017; 47: 113 ‐ 120.
dc.identifier.citedreferenceSantos AF, Shreffler WG. Road map for the clinical application of the basophil activation test in food allergy. Clin Exp Allergy. 2017; 47: 1115 ‐ 1124.
dc.identifier.citedreferenceLindvik H, Lødrup Carlsen KC, Mowinckel P, Navaratnam J, Borres MP, Carlsen K‐H. Conjunctival provocation test in diagnosis of peanut allergy in children. Clin Exp Allergy. 2017; 47: 785 ‐ 794.
dc.identifier.citedreferenceAthanasopoulou P, Deligianni E, Dean T, Dewey A, Venter C. Use of baked milk challenges and milk ladders in clinical practice: a worldwide survey of healthcare professionals. Clin Exp Allergy. 2017; 47: 430 ‐ 434.
dc.identifier.citedreferenceLambert R, Grimshaw KEC, Ellis B, Jaitly J, Roberts G. Evidence that eating baked egg or milk influences egg or milk allergy resolution: a systematic review. Clin Exp Allergy. 2017; 47: 829 ‐ 837.
dc.identifier.citedreferenceBrandstrom J, Vetander M, Lilja G, et al. Individually dosed omalizumab: an effective treatment for severe peanut allergy. Clin Exp Allergy. 2017; 47: 540 ‐ 550.
dc.identifier.citedreferenceAmat F, Kouche C, Gaspard W, et al. Is a slow‐progression baked milk protocol of oral immunotherapy always a safe option for children with cow’s milk allergy? A randomized controlled trial. Clin Exp Allergy. 2017; 47: 1491 ‐ 1496.
dc.identifier.citedreferenceTao B, Morris S, Grzeskowiak L, Smith W, Forsyth K, Chataway T. Sequential hypoallergenic boiled peanut and roasted peanut oral immunotherapy. Clin Exp Allergy. 2017; 47: 1501 ‐ 1504.
dc.identifier.citedreferenceBoyle RJ, Umasunthar T, Smith JG, et al. A brief psychological intervention for mothers of children with food allergy can change risk perception and reduce anxiety: outcomes of a randomized controlled trial. Clin Exp Allergy. 2017; 47: 1309 ‐ 1317.
dc.identifier.citedreferencePeldan P, Kukkonen AK, Savilahti E, Kuitunen M. Perinatal probiotics decreased eczema up to 10 years of age, but at 5‐10 years, allergic rhino‐conjunctivitis was increased. Clin Exp Allergy. 2017; 2017 ( 47 ): 975 ‐ 979.
dc.identifier.citedreferenceWang J, Suarez‐Farinas M, Estrada Y, et al. Identification of unique proteomic signatures in allergic and non‐allergic skin disease. Clin Exp Allergy. 2017; 47: 1456 ‐ 1467.
dc.identifier.citedreferenceRuokolainen L, Paalanen L, Karkman A, et al. Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clin Exp Allergy. 2017; 47 ( 5 ): 665 ‐ 674.
dc.identifier.citedreferenceFall T, Lundholm C, Ortqvist AK, et al. Early exposure to dogs and farm animals and the risk of childhood asthma. JAMA Pediatr. 2015; 169 ( 11 ): e153219.
dc.identifier.citedreferenceOwnby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002; 288 ( 8 ): 963 ‐ 972.
dc.identifier.citedreferenceWegienka G, Havstad S, Kim H, et al. Subgroup differences in the associations between dog exposure during the first year of life and early life allergic outcomes. Clin Exp Allergy. 2017; 47 ( 1 ): 97 ‐ 105.
dc.identifier.citedreferenceSimoneti CS, Ferraz E, de Menezes MB, Bagatin E, Arruda LK, Vianna EO. Allergic sensitization to laboratory animals is more associated with asthma, rhinitis, and skin symptoms than sensitization to common allergens. Clin Exp Allergy. 2017; 47 ( 11 ): 1436 ‐ 1444.
dc.identifier.citedreferenceOrtqvist AK, Lundholm C, Kieler H, et al. Antibiotics in fetal and early life and subsequent childhood asthma: nationwide population based study with sibling analysis. BMJ. 2014; 349: g6979.
dc.identifier.citedreferenceOrtqvist AK, Lundholm C, Fang F, Fall T, Almqvist C. Parental antibiotics and childhood asthma‐a population‐based study. J Allergy Clin Immunol Pract. 2017; 5 ( 5 ): 1451 ‐ 1454.e4.
dc.identifier.citedreferenceTimm S, Schlunssen V, Olsen J, Ramlau‐Hansen CH. Prenatal antibiotics and atopic dermatitis among 18‐month‐old children in the Danish National Birth Cohort. Clin Exp Allergy. 2017; 47 ( 7 ): 929 ‐ 936.
dc.identifier.citedreferenceMarkevych I, Baumbach C, Standl M, et al. Early life travelling does not increase risk of atopic outcomes until 15 years: results from GINIplus and LISAplus. Clin Exp Allergy. 2017; 47 ( 3 ): 395 ‐ 400.
dc.identifier.citedreferenceD’Onofrio BM, Class QA, Rickert ME, et al. Translational epidemiologic approaches to understanding the consequences of early‐life exposures. Behav Genet. 2016; 46 ( 3 ): 315 ‐ 328.
dc.identifier.citedreferenceGong T, Brew B, Sjolander A, Almqvist C. Towards non‐conventional methods of designing register‐based epidemiological studies: an application to pediatric research. Scand J Public Health. 2017; 45 ( 17_suppl ): 30 ‐ 35.
dc.identifier.citedreferenceSoto‐Ramirez N, Kar S, Zhang H, Karmaus W. Infant feeding patterns and eczema in children in the first 6 years of life. Clin Exp Allergy. 2017; 47 ( 10 ): 1285 ‐ 1298.
dc.identifier.citedreferenceGref A, Rautiainen S, Gruzieva O, et al. Dietary total antioxidant capacity in early school age and subsequent allergic disease. Clin Exp Allergy. 2017; 47 ( 6 ): 751 ‐ 759.
dc.identifier.citedreferenceHamalainen N, Nwaru BI, Erlund I, et al. Serum carotenoid and tocopherol concentrations and risk of asthma in childhood: a nested case‐control study. Clin Exp Allergy. 2017; 47 ( 3 ): 401 ‐ 409.
dc.identifier.citedreferencePinto LA, Guerra S, Anto JM, et al. Increased risk of asthma in overweight children born large for gestational age. Clin Exp Allergy. 2017; 47 ( 8 ): 1050 ‐ 1056.
dc.identifier.citedreferenceEl‐Heis S, Crozier SR, Healy E, et al. Maternal stress and psychological distress preconception: association with offspring atopic eczema at age 12 months. Clin Exp Allergy. 2017; 47 ( 6 ): 760 ‐ 769.
dc.identifier.citedreferenceElbert NJ, Duijts L, den Dekker HT, et al. Maternal psychiatric symptoms during pregnancy and risk of childhood atopic diseases. Clin Exp Allergy. 2017; 47 ( 4 ): 509 ‐ 519.
dc.identifier.citedreferenceBrew BK, Lundholm C, Viktorin A, Lichtenstein P, Larsson H, Almqvist C. Longitudinal depression or anxiety in mothers and offspring asthma: a Swedish population‐based study. Int J Epidemiol. 2017; 47: 166 ‐ 174.
dc.identifier.citedreferenceBrew BK, Gong T, Williams DM, Larsson H, Almqvist C. Using fathers as a negative control exposure to test the Developmental Origins of Health and Disease Hypothesis: a case study on maternal distress and offspring asthma using Swedish register data. Scand J Public Health. 2017; 45 ( 17_suppl ): 36 ‐ 40.
dc.identifier.citedreferenceBurte E, Bousquet J, Siroux V, Just J, Jacquemin B, Nadif R. The sensitization pattern differs according to rhinitis and asthma multimorbidity in adults: the EGEA study. Clin Exp Allergy. 2017; 47 ( 4 ): 520 ‐ 529.
dc.identifier.citedreferenceBarton SJ, Ngo S, Costello P, et al. DNA methylation of Th2 lineage determination genes at birth is associated with allergic outcomes in childhood. Clin Exp Allergy. 2017; 47 ( 12 ): 1599 ‐ 1608.
dc.identifier.citedreferenceZiyab AH, Ewart S, Lockett GA, et al. Expression of the filaggrin gene in umbilical cord blood predicts eczema risk in infancy: a birth cohort study. Clin Exp Allergy. 2017; 47 ( 9 ): 1185 ‐ 1192.
dc.identifier.citedreferenceLicona‐Limon P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013; 14: 536 ‐ 542.
dc.identifier.citedreferenceMitchell PD, O’Byrne PM. Epithelial derived cytokines in asthma. Chest. 2016; 151: 1338 ‐ 1344.
dc.identifier.citedreferenceFinkelman FD, Hogan SP, Khurana Hershey GK, Rothenberg ME, Wills‐Karp M. Importance of cytokines in murine allergic airway disease and human asthma. J Immunol. 2010; 184: 1663 ‐ 1674.
dc.identifier.citedreferenceZhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin‐4 (IL‐4) and IL‐13 production. Cytokine. 2015; 75: 14 ‐ 24.
dc.identifier.citedreferenceLane P. Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J Exp Med. 2000; 191: 201 ‐ 206.
dc.identifier.citedreferenceMo LH, Yang LT, Zeng L, et al. Dust mite allergen, glutathione S‐transferase, induces T cell immunoglobulin mucin domain‐4 in dendritic cells to facilitate initiation of airway allergy. Clin Exp Allergy. 2017; 47: 264 ‐ 270.
dc.identifier.citedreferenceLi J, Zhao X, Liu X, Liu H. Disruption of TIM‐4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells. Mol Immunol. 2015; 66: 117 ‐ 125.
dc.identifier.citedreferenceChapman DG, Mougey EB, Van der Velden JL, et al. The Duffy antigen receptor for chemokines regulates asthma pathophysiology. Clin Exp Allergy. 2017; 47: 1214 ‐ 1222.
dc.identifier.citedreferenceHoruk R. The duffy antigen receptor for chemokines DARC/ACKR1. Front Immunol. 2015; 6: 279.
dc.identifier.citedreferenceHansell CA, Hurson CE, Nibbs RJ. DARC and D6: silent partners in chemokine regulation? Immunol Cell Biol. 2011; 89: 197 ‐ 206.
dc.identifier.citedreferenceLocati M, Torre YM, Galliera E, et al. Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Rev. 2005; 16: 679 ‐ 686.
dc.identifier.citedreferenceVergara C, Tsai YJ, Grant AV, et al. Gene encoding Duffy antigen/receptor for chemokines is associated with asthma and IgE in three populations. Am J Respir Crit Care Med. 2008; 178: 1017 ‐ 1022.
dc.identifier.citedreferenceHamelmann E, Vella AT, Oshiba A, Kappler JW, Marrack P, Gelfand EW. Allergic airway sensitization induces T cell activation but not airway hyperresponsiveness in B cell‐deficient mice. Proc Natl Acad Sci USA. 1997; 94: 1350 ‐ 1355.
dc.identifier.citedreferenceHamelmann E, Takeda K, Schwarze J, Vella AT, Irvin CG, Gelfand EW. Development of eosinophilic airway inflammation and airway hyperresponsiveness requires interleukin‐5 but not immunoglobulin E or B lymphocytes. Am J Respir Cell Mol Biol. 1999; 21: 480 ‐ 489.
dc.identifier.citedreferenceKorsgren M, Erjefalt JS, Korsgren O, Sundler F, Persson CGA. Allergic eosinophil‐rich inflammation develops in lungs and airways of B cell‐deficient mice. J Exp Med. 1997; 185: 885 ‐ 892.
dc.identifier.citedreferenceBallesteros‐Tato A, Randall TD, Lund FE, Spolski R, Leonard WJ, Leon B. T follicular helper cell plasticity shapes pathogenic T helper 2 cell‐mediated immunity to inhaled house dust mite. Immunity. 2016; 44: 259 ‐ 273.
dc.identifier.citedreferenceVroman H, Bergen IM, Li BW, et al. Development of eosinophilic inflammation is independent of B‐T cell interaction in a chronic house dust mite‐driven asthma model. Clin Exp Allergy. 2017; 47: 551 ‐ 564.
dc.identifier.citedreferenceKubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 2017; 278: 162 ‐ 172.
dc.identifier.citedreferenceLarose MC, Archambault AS, Provost V, Laviolette M, Flamand N. Regulation of eosinophil and group 2 innate lymphoid cell trafficking in asthma. Front Med. 2017; 4: 136.
dc.identifier.citedreferenceMcKenzie AN. Type‐2 innate lymphoid cells in asthma and allergy. Ann Am Thorac Soc. 2014; 11 ( suppl 5 ): S263 ‐ S270.
dc.identifier.citedreferenceKondo M, Tsuji M, Hara K, et al. Chloride ion transport and overexpression of TMEM16A in a guinea‐pig asthma model. Clin Exp Allergy. 2017; 47: 795 ‐ 804.
dc.identifier.citedreferenceHuang F, Zhang H, Wu M, et al. Calcium‐activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 2012; 109: 16354 ‐ 16359.
dc.identifier.citedreferenceZhang CH, Li Y, Zhao W, et al. The transmembrane protein 16A Ca(2 + )‐activated Cl‐ channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med. 2013; 187: 374 ‐ 381.
dc.identifier.citedreferenceNoah TL, Paradiso AM, Madden MC, McKinnon KP, Devlin RB. The response of a human bronchial epithelial cell line to histamine: intracellular calcium changes and extracellular release of inflammatory mediators. Am J Respir Cell Mol Biol. 1991; 5: 484 ‐ 492.
dc.identifier.citedreferenceGronroos E, Schippert A, Engstrom M, Sjolander A. The regulation of leukotriene D4‐induced calcium influx in human epithelial cells involves protein tyrosine phosphorylation. Cell Calcium. 1995; 17: 177 ‐ 186.
dc.identifier.citedreferenceDuran C, Hartzell HC. Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin. 2011; 32: 685 ‐ 692.
dc.identifier.citedreferenceXiao Q, Yu K, Perez‐Cornejo P, Cui Y, Arreola J, Hartzell HC. Voltage‐ and calcium‐dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A. 2011; 108: 8891 ‐ 8896.
dc.identifier.citedreferenceYu K, Zhu J, Qu Z, Cui YY, Hartzell HC. Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. J Gen Physiol. 2014; 143: 253 ‐ 267.
dc.identifier.citedreferencePerez‐Cornejo P, Gokhale A, Duran C, et al. Anoctamin 1 (Tmem16A) Ca2 + ‐activated chloride channel stoichiometrically interacts with an ezrin‐radixin‐moesin network. Proc Natl Acad Sci U S A. 2012; 109: 10376 ‐ 10381.
dc.identifier.citedreferenceBlackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle. 2009; 8: 3527 ‐ 3536.
dc.identifier.citedreferenceRuiz C, Martins JR, Rudin F, et al. Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS ONE. 2012; 7: e43265.
dc.identifier.citedreferenceKuver R, Klinkspoor JH, Osborne WR, Lee SP. Mucous granule exocytosis and CFTR expression in gallbladder epithelium. Glycobiology. 2000; 10: 149 ‐ 157.
dc.identifier.citedreferencePaz HB, Tisdale AS, Danjo Y, Spurr‐Michaud SJ, Argueso P, Gipson IK. The role of calcium in mucin packaging within goblet cells. Exp Eye Res. 2003; 77: 69 ‐ 75.
dc.identifier.citedreferenceGorrieri G, Scudieri P, Caci E, et al. Goblet cell hyperplasia requires high bicarbonate transport to support mucin release. Sci Rep. 2016; 6: 36016.
dc.identifier.citedreferenceMalmberg LP, Saarinen KM, Pelkonen AS, Savilahti E, Makela MJ. Cow’s milk allergy as a predictor of bronchial hyperresponsiveness and airway inflammation at school age. Clin Exp Allergy. 2010; 40: 1491 ‐ 1497.
dc.identifier.citedreferenceTariq SM, Matthews SM, Hakim EA, Arshad SH. Egg allergy in infancy predicts respiratory allergic disease by 4 years of age. Pediatr Allergy Immunol. 2000; 11: 162 ‐ 167.
dc.identifier.citedreferenceLiu AH, Jaramillo R, Sicherer SH, et al. National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005‐2006. J Allergy Clin Immunol. 2010; 126 ( ): 798 ‐ 806.e13.
dc.identifier.citedreferenceFox A, Dutoit G, Foong RX. Mini review – asthma and food allergy. Curr Pediatr Rev. 2018; 14: 164 ‐ 170.
dc.identifier.citedreferenceFoong RX, du Toit G, Fox AT. Asthma, food allergy, and how they relate to each other. Front Pediatr. 2017; 5: 89.
dc.identifier.citedreferenceMotosue MS, Bellolio MF, Van Houten HK, Shah ND, Campbell RL. Risk factors for severe anaphylaxis in the United States. Ann Allergy Asthma Immunol. 2017; 119: 356 ‐ 361.e2.
dc.identifier.citedreferenceSmith PK, Hourihane JO, Lieberman P. Risk multipliers for severe food anaphylaxis. World Allergy Organ J. 2015; 8: 30.
dc.identifier.citedreferenceUtsch L, Logiantara A, van Ree R, van Rijt LS. Experimental food allergy to peanut enhances the immune response to house dust mite in the airways of mice. Clin Exp Allergy. 2017; 47: 121 ‐ 128.
dc.identifier.citedreferenceLee JB, Chen CY, Liu B, et al. IL‐25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell‐derived IL‐13 production, which promotes IgE‐mediated experimental food allergy. J Allergy Clin Immunol. 2016; 137: 1216 ‐ 1225.e5.
dc.identifier.citedreferenceFinkelman FD. Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol. 2007; 120: 506 ‐ 515.
dc.identifier.citedreferenceBergeron C, Al‐Ramli W, Hamid Q. Remodeling in asthma. Proc Am Thorac Soc. 2009; 6: 301 ‐ 305.
dc.identifier.citedreferenceBergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: from benchside to clinical practice. Can Respir J. 2010; 17: e85 ‐ e93.
dc.identifier.citedreferenceBarnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013; 2013: 636 ‐ 645.
dc.identifier.citedreferenceWeiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014; 32: 16 ‐ 25.
dc.identifier.citedreferenceDeans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000; 28: 875 ‐ 884.
dc.identifier.citedreferencePittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143 ‐ 147.
dc.identifier.citedreferenceBassi EJ, de Almeida DC, Moraes‐Vieira PM, Camara NO. Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev. 2012; 8: 329 ‐ 342.
dc.identifier.citedreferenceIyer SS, Rojas M. Anti‐inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Exp Opin Biol Ther. 2008; 8: 569 ‐ 581.
dc.identifier.citedreferenceKadle RL, Abdou SA, Villarreal‐Ponce AP, et al. Microenvironmental cues enhance mesenchymal stem cell‐mediated immunomodulation and regulatory T‐cell expansion. PLoS ONE. 2018; 13: e0193178.
dc.identifier.citedreferenceLee HJ, Kim SN, Jeon MS, Yi T, Song SU. ICOSL expression in human bone marrow‐derived mesenchymal stem cells promotes induction of regulatory T cells. Sci Rep. 2017; 7: 44486.
dc.identifier.citedreferenceChinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol. 2016; 137: 984 ‐ 997.
dc.identifier.citedreferenceBerin MC. Pathogenesis of IgE‐mediated food allergy. Clin Exp Allergy. 2015; 45: 1483 ‐ 1496.
dc.identifier.citedreferenceAbrams EM, Greenhawt M, Fleischer DM, Chan ES. Early solid food introduction: role in food allergy prevention and implications for breastfeeding. J Pediatr. 2017; 184: 13 ‐ 18.
dc.identifier.citedreferenceGrimshaw KE, Maskell J, Oliver EM, et al. Introduction of complementary foods and the relationship to food allergy. Pediatrics. 2013; 132: e1529 ‐ e1538.
dc.identifier.citedreferencePerkin MR, Logan K, Tseng A, et al. Randomized trial of introduction of allergenic foods in breast‐fed infants. N Engl J Med. 2016; 374: 1733 ‐ 1743.
dc.identifier.citedreferenceO’Dea E, Hoffmann A. The regulatory logic of the NF‐kappaB signaling system. Cold Spring Harb Perspect Biol. 2010; 2: a000216.
dc.identifier.citedreferenceRekima A, Macchiaverni P, Turfkruyer M, et al. Long‐term reduction in food allergy susceptibility in mice by combining breastfeeding‐induced tolerance and TGF‐beta‐enriched formula after weaning. Clin Exp Allergy. 2017; 47: 565 ‐ 576.
dc.identifier.citedreferenceHering NA, Andres S, Fromm A, et al. Transforming growth factor‐beta, a whey protein component, strengthens the intestinal barrier by upregulating claudin‐4 in HT‐29/B6 cells. J Nutr. 2011; 141: 783 ‐ 789.
dc.identifier.citedreferenceHowe KL, Reardon C, Wang A, Nazli A, McKay DM. Transforming growth factor‐beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7‐induced increased permeability. Am J Pathol. 2005; 167: 1587 ‐ 1597.
dc.identifier.citedreferenceBahna SL, Burkhardt JG. The dilemma of allergy to food additives. Allergy Asthma Proc. 2018; 39: 3 ‐ 8.
dc.identifier.citedreferenceFuglsang G, Madsen G, Halken S, Jorgensen S, Ostergaard PA, Osterballe O. Adverse reactions to food additives in children with atopic symptoms. Allergy. 1994; 49: 31 ‐ 37.
dc.identifier.citedreferenceYamashita H, Matsuhara H, Miotani S, et al. Artificial sweeteners and mixture of food additives cause to break oral tolerance and induce food allergy in murine oral tolerance model for food allergy. Clin Exp Allergy. 2017; 47: 1204 ‐ 1213.
dc.identifier.citedreferenceRuiter B, Shreffler WG. The role of dendritic cells in food allergy. J Allergy Clin Immunol. 2012; 129: 921 ‐ 928.
dc.identifier.citedreferenceLozano‐Ojalvo D, Perez‐Rodriguez L, Pablos‐Tanarro A, Molina E, Lopez‐Fandino R. Hydrolysed ovalbumin offers more effective preventive and therapeutic protection against egg allergy than the intact protein. Clin Exp Allergy. 2017; 47: 1342 ‐ 1354.
dc.identifier.citedreferenceKyburz A, Muller A. Helicobacter pylori and extragastric diseases. Curr Top Microbiol Immunol. 2017; 400: 325 ‐ 347.
dc.identifier.citedreferenceChen Y, Blaser MJ. Helicobacter pylori colonization is inversely associated with childhood asthma. J Infect Dis. 2008; 198: 553 ‐ 560.
dc.identifier.citedreferenceKyburz A, Urban S, Altobelli A, et al. Helicobacter pylori and its secreted immunomodulator VacA protect against anaphylaxis in experimental models of food allergy. Clin Exp Allergy. 2017; 47: 1331 ‐ 1341.
dc.identifier.citedreferenceBraun‐Fahrlander C, Gassner M, Grize L, et al. Prevalence of hay fever and allergic sensitization in farmer’s children and their peers living in the same rural community. SCARPOL team. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution. Clin Exp Allergy. 1999; 29: 28 ‐ 34.
dc.identifier.citedreferenceRiedler J, Braun‐Fahrlander C, Eder W, et al. Exposure to farming in early life and development of asthma and allergy: a cross‐sectional survey. Lancet. 2001; 358: 1129 ‐ 1133.
dc.identifier.citedreferenceFrossard CP, Lazarevic V, Gaia N, et al. The farming environment protects mice from allergen‐induced skin contact hypersensitivity. Clin Exp Allergy. 2017; 47: 805 ‐ 814.
dc.identifier.citedreferenceMalik K, Ungar B, Garcet S, et al. Dust mite induces multiple polar T cell axes in human skin. Clin Exp Allergy. 2017; 47: 1648 ‐ 1660.
dc.identifier.citedreferenceCollins MH, Martin LJ, Alexander ES, et al. Newly developed and validated eosinophilic esophagitis histology scoring system and evidence that it outperforms peak eosinophil count for disease diagnosis and monitoring. Dis Esophagus. 2017; 30: 1 ‐ 8.
dc.identifier.citedreferenceDavis BP, Rothenberg ME. Mechanisms of disease of eosinophilic esophagitis. Annu Rev Pathol. 2016; 11: 365 ‐ 393.
dc.identifier.citedreferenceGonsalves N, Kagalwalla AF. Dietary treatment of eosinophilic esophagitis. Gastroenterol Clin North Am. 2014; 43: 375 ‐ 383.
dc.identifier.citedreferenceWarners MJ, Vlieg‐Boerstra BJ, Bredenoord AJ. Elimination and elemental diet therapy in eosinophilic oesophagitis. Best Pract Res Clin Gastroenterol. 2015; 29: 793 ‐ 803.
dc.identifier.citedreferenceJones SM, Sicherer SH, Burks AW, et al. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J Allergy Clin Immunol. 2017; 139: 1242 ‐ 1252.e9.
dc.identifier.citedreferenceMondoulet L, Kalach N, Dhelft V, et al. Treatment of gastric eosinophilia by epicutaneous immunotherapy in piglets sensitized to peanuts. Clin Exp Allergy. 2017; 47: 1640 ‐ 1647.
dc.identifier.citedreferenceSato N, Kinbara M, Kuroishi T, et al. Lipopolysaccharide promotes and augments metal allergies in mice, dependent on innate immunity and histidine decarboxylase. Clin Exp Allergy. 2007; 37: 743 ‐ 751.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.