Show simple item record

Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads

dc.contributor.authorWang, Xu
dc.contributor.authorBaraban, Larysa
dc.contributor.authorMisko, Vyacheslav R.
dc.contributor.authorNori, Franco
dc.contributor.authorHuang, Tao
dc.contributor.authorCuniberti, Gianaurelio
dc.contributor.authorFassbender, Jürgen
dc.contributor.authorMakarov, Denys
dc.date.accessioned2018-12-06T17:38:04Z
dc.date.available2020-01-06T16:41:00Zen
dc.date.issued2018-11
dc.identifier.citationWang, Xu; Baraban, Larysa; Misko, Vyacheslav R.; Nori, Franco; Huang, Tao; Cuniberti, Gianaurelio; Fassbender, Jürgen ; Makarov, Denys (2018). "Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads." Small 14(44): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/146656
dc.description.abstractInsight is provided into the collective behavior of visible‐light photochemically driven plasmonic Ag/AgCl Janus particles surrounded by passive polystyrene (PS) beads. The active diffusion of single Janus particles and their clusters (small: consisting of two or three Janus particles and large: consisting of more than ten Janus particles), and their interaction with passive PS beads, are analyzed experimentally and in simulations. The diffusivity of active Janus particles, and thus the exclusive effect to passive PS beads, can be regulated by the number of single Janus particles in the cluster. On the simulation side, the Langevin equations of motion for self‐propelled Janus particles and diffusing passive PS beads are numerically solved using Molecular‐Dynamics simulations. The complex interactions of both subsystems, including elastic core‐to‐core interactions, short‐range attraction, and effective repulsion due to light‐induced chemical reactions are considered. This complex mixed system not only provides insight to the interactive effect between active visible light‐driven self‐propelled micromotors and passive beads, but also offers promise for implications in light‐controlled propulsion transport and chemical sensing.Visible light actuated plasmonic Ag/AgCl‐based spherical Janus micromotors reveal efficient exclusion effects on surrounding passive beads in pure H2O. The exclusion efficiency is controlled by the number of single Janus particles composing micromotors. The system‐specific interaction parameter between Janus micromotors and passive beads is determined. It assures predictive power for further theoretical analysis of the complex dynamics of these heterogeneous active‐passive systems.
dc.publisherWiley Periodicals, Inc.
dc.subject.othervisible light‐driven micromotors
dc.subject.otheractive Janus particles
dc.subject.otherexclusion interaction
dc.subject.otherpassive beads
dc.titleVisible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146656/1/smll201802537_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146656/2/smll201802537.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146656/3/smll201802537-sup-0001-S1.pdf
dc.identifier.doi10.1002/smll.201802537
dc.identifier.sourceSmall
dc.identifier.citedreferenceY. X. Tang, Z. L. Jiang, G. C. Xing, A. R. Li, P. D. Kanhere, Y. Y. Zhang, T. C. Sum, S. Z. Li, X. D. Chen, Z. L. Dong, Z. Chen, Adv. Funct. Mater. 2013, 23, 2932.
dc.identifier.citedreferenceD. P. Singh, W. E. Uspal, M. N. Popescu, L. G. Wilson, P. Fischer, Adv. Funct. Mater. 2018, 28, 1706660.
dc.identifier.citedreferenceX. Wang, V. Sridhar, S. Guo, N. Talebi, A. Miguel‐López, K. Hahn, P. A. van Aken, S. Sánchez, Adv. Funct. Mater. 2018, 28, 1705862.
dc.identifier.citedreferenceC. Zhou, H. P. Zhang, J. Y. Tang, W. Wang, Langmuir 2018, 34, 3289.
dc.identifier.citedreferenceM. E. Ibele, P. E. Lammert, V. H. Crespi, A. Sen, ACS Nano 2010, 4, 4845.
dc.identifier.citedreferenceD. P. Singh, U. Choudhury, P. Fischer, A. G. Mark, Adv. Mater. 2017, 29, 1701328.
dc.identifier.citedreferenceJ. J. McDermott, A. Kar, M. Daher, S. Klara, G. Wang, A. Sen, D. Velegol, Langmuir 2012, 28, 15491.
dc.identifier.citedreferenceA. Afshar Farniya, M. J. Esplandiu, A. Bachtold, Langmuir 2014, 30, 11841.
dc.identifier.citedreferenceE. L. Jewell, W. Wang, T. E. Mallouk, Soft Matter 2016, 12, 2501.
dc.identifier.citedreferenceM. Li, Y. Su, H. Zhang, B. Dong, Nano Res. 2018, 11, 1810.
dc.identifier.citedreferenceY. Bi, J. Ye, Chem. Commun. 2009, 6551.
dc.identifier.citedreferenceB. E.‐F. de Ávila, P. Angsantikul, D. E. Ramírez‐Herrera, F. Soto, H. Teymourian, D. Dehaini, Y. Chen, L. Zhang, J. Wang, Sci. Robotics 2018, 3, eaat0485.
dc.identifier.citedreferenceC. An, S. Peng, Y. Sun, Adv. Mater. 2010, 22, 2570.
dc.identifier.citedreferenceP. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Chem.‐Eur. J. 2010, 16, 538.
dc.identifier.citedreferenceG. Calzaferri, Catal. Today 1997, 39, 145.
dc.identifier.citedreferenceG. Dunderdale, S. Ebbens, P. Fairclough, J. Howse, Langmuir 2012, 28, 10997.
dc.identifier.citedreferenceL. Weimann, K. A. Ganzinger, J. McColl, K. L. Irvine, S. J. Davis, N. J. Gay, C. E. Bryant, D. Klenerman, PLoS ONE 2013, 8, e64287.
dc.identifier.citedreferenceM. J. Saxton, Biophys. J. 1997, 72, 1744.
dc.identifier.citedreferenceP. K. Ghosh, V. R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 2013, 110, 268301.
dc.identifier.citedreferenceD. Takagi, A. B. Braunschweig, J. Zhang, M. J. Shelley, Phys. Rev. Lett. 2013, 110, 038301.
dc.identifier.citedreferenceH. Yu, A. Kopach, V. R. Misko, A. A. Vasylenko, D. Makarov, F. Marchesoni, F. Nori, L. Baraban, G. Cuniberti, Small 2016, 12, 5882.
dc.identifier.citedreferenceP. K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, Phys. Rev. E 2014, 89, 062115.
dc.identifier.citedreferenceW. Yang, V. R. Misko, F. Marchesoni, F. Nori, J. Phys.: Condens. Matter 2018, 30, 264004.
dc.identifier.citedreferenceE. Purcell, Am. J. Phys. 1977, 45, 3.
dc.identifier.citedreferenceG. Volpe, S. Gigan, G. Volpe, Am. J. Phys. 2014, 82, 659.
dc.identifier.citedreferenceS. Ebbens, R. A. Jones, A. J. Ryan, R. Golestanian, J. R. Howse, Phys. Rev. E 2010, 82, 015304.
dc.identifier.citedreferenceL. Baraban, M. Tasinkevych, M. N. Popescu, S. Sanchez, S. Dietrich, O. G. Schmidt, Soft Matter 2012, 8, 48.
dc.identifier.citedreferenceR. Golestanian, Phys. Rev. Lett. 2009, 102, 188305.
dc.identifier.citedreferenceL. Soler, V. Magdanz, V. M. Fomin, S. Sanchez, O. G. Schmidt, ACS Nano 2013, 7, 9611.
dc.identifier.citedreferenceD. A. Uygun, B. Jurado‐Sanchez, M. Uygun, J. Wang, Environ. Sci.: Nano 2016, 3, 559.
dc.identifier.citedreferenceD. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sanchez, Nano Lett. 2016, 16, 2860.
dc.identifier.citedreferenceJ. Simmchen, A. Baeza, A. Miguel‐Lopez, M. M. Stanton, M. Vallet‐Regi, D. Ruiz‐Molina, S. Sanchez, ChemNanoMat 2017, 3, 65.
dc.identifier.citedreferenceK. Villa, J. Parmar, D. Vilela, S. Sanchez, ACS Appl. Mater. Interfaces 2018, 10, 20478.
dc.identifier.citedreferenceB. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C. C. Li, S. P. Feng, J. Tang, Nat. Nanotechnol. 2016, 11, 1087.
dc.identifier.citedreferenceR. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, ACS Nano 2016, 10, 839.
dc.identifier.citedreferenceW. Li, X. R. Wu, H. Qin, Z. Q. Zhao, H. W. Liu, Adv. Funct. Mater. 2016, 26, 3164.
dc.identifier.citedreferenceH. P. Zhang, A. Be’er, E. L. Florin, H. L. Swinney, Proc. Natl. Acad. Sci. USA 2010, 107, 13626.
dc.identifier.citedreferenceM. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, R. A. Simha, Rev. Mod. Phys. 2013, 85, 1143.
dc.identifier.citedreferenceA. P. Petroff, X. L. Wu, A. Libchaber, Phys. Rev. Lett. 2015, 114, 158102.
dc.identifier.citedreferenceP. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M. H. Whangbo, Angew. Chem., Int. Ed. 2008, 47, 7931.
dc.identifier.citedreferenceA. Bricard, J. B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Nature 2013, 503, 95.
dc.identifier.citedreferenceJ. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, Science 2013, 339, 936.
dc.identifier.citedreferenceW. Wang, W. Duan, S. Ahmed, A. Sen, T. E. Mallouk, Acc. Chem. Res. 2015, 48, 1938.
dc.identifier.citedreferenceJ. Stenhammar, R. Wittkowski, D. Marenduzzo, M. E. Cates, Sci. Adv. 2016, 2, e1501850.
dc.identifier.citedreferenceJ. Yan, M. Han, J. Zhang, C. Xu, E. Luijten, S. Granick, Nat. Mater. 2016, 15, 1095.
dc.identifier.citedreferenceC. Chen, X. Chang, H. Teymourian, D. E. R. Herrera, B. E. Fernández de Ávila, X. Lu, J. Li, S. He, C. Fang, Y. Liang, Angew. Chem., Int. Ed. 2018, 57, 241.
dc.identifier.citedreferenceL. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O. G. Schmidt, ACS Nano 2012, 6, 3383.
dc.identifier.citedreferenceA. Altemose, M. A. Sanchez‐Farran, W. Duan, S. Schulz, A. Borhan, V. H. Crespi, A. Sen, Angew. Chem., Int. Ed. USA 2017, 56, 7817.
dc.identifier.citedreferenceM. Ibele, T. E. Mallouk, A. Sen, Angew. Chem., Int. Ed. 2009, 48, 3308.
dc.identifier.citedreferenceY. Mei, A. A. Solovev, S. Sanchez, O. G. Schmidt, Chem. Soc. Rev. 2011, 40, 2109.
dc.identifier.citedreferenceL. Baraban, D. Makarov, O. G. Schmidt, G. Cuniberti, P. Leiderer, A. Erbe, Nanoscale 2013, 5, 1332.
dc.identifier.citedreferenceJ. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 2007, 99, 048102.
dc.identifier.citedreferenceV. Garcia Gradilla, S. Sattayasamitsathit, F. Soto, F. Kuralay, C. Yardimci, D. Wiitala, M. Galarnyk, J. Wang, Small 2014, 10, 4154.
dc.identifier.citedreferenceZ. Wu, X. Lin, X. Zou, J. Sun, Q. He, ACS Appl. Mater. Int. 2015, 7, 250.
dc.identifier.citedreferenceX. Ma, K. Hahn, S. Sanchez, J. Am. Chem. Soc. 2015, 137, 4976.
dc.identifier.citedreferenceF. Peng, Y. Tu, J. van Hest, D. A. Wilson, Angew. Chem. 2015, 127, 11828.
dc.identifier.citedreferenceC. Peters, M. Hoop, S. Pane, B. J. Nelson, C. Hierold, Adv. Mater. 2016, 28, 533.
dc.identifier.citedreferenceB. E.‐F. de Ávila, P. Angsantikul, J. Li, M. A. Lopez‐Ramirez, D. E. Ramírez‐Herrera, S. Thamphiwatana, C. Chen, J. Delezuk, R. Samakapiruk, V. Ramez, Nat. Commun. 2017, 8, 272.
dc.identifier.citedreferenceZ. Wu, T. Li, W. Gao, T. Xu, B. Jurado‐Sánchez, J. Li, W. Gao, Q. He, L. Zhang, J. Wang, Adv. Funct. Mater. 2015, 25, 3881.
dc.identifier.citedreferenceS. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez‐Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga, P. Fischer, Nat. Mater. 2016, 15, 647.
dc.identifier.citedreferenceC. Chen, F. Mou, L. Xu, S. Wang, J. Guan, Z. Feng, Q. Wang, L. Kong, W. Li, J. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1603374.
dc.identifier.citedreferenceR. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, J. Am. Chem. Soc. 2017, 139, 1722.
dc.identifier.citedreferenceB. Jang, A. Hong, H. E. Kang, C. Alcantara, S. Charreyron, F. Mushtaq, E. Pellicer, R. Buchel, J. Sort, S. S. Lee, B. J. Nelson, S. Pane, ACS Nano 2017, 11, 6146.
dc.identifier.citedreferenceJ. Zheng, B. Dai, J. Wang, Z. Xiong, Y. Yang, J. Liu, X. Zhan, Z. Wan, J. Tang, Nat. Commun. 2017, 8, 1438.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.