Show simple item record

Toward harmonizing ecotoxicity characterization in life cycle impact assessment

dc.contributor.authorFantke, Peter
dc.contributor.authorAurisano, Nicoló
dc.contributor.authorBare, Jane
dc.contributor.authorBackhaus, Thomas
dc.contributor.authorBulle, Cécile
dc.contributor.authorChapman, Peter M.
dc.contributor.authorDe Zwart, Dick
dc.contributor.authorDwyer, Robert
dc.contributor.authorErnstoff, Alexi
dc.contributor.authorGolsteijn, Laura
dc.contributor.authorHolmquist, Hanna
dc.contributor.authorJolliet, Olivier
dc.contributor.authorMcKone, Thomas E.
dc.contributor.authorOwsianiak, Mikołaj
dc.contributor.authorPeijnenburg, Willie
dc.contributor.authorPosthuma, Leo
dc.contributor.authorRoos, Sandra
dc.contributor.authorSaouter, Erwan
dc.contributor.authorSchowanek, Diederik
dc.contributor.authorvan Straalen, Nico M.
dc.contributor.authorVijver, Martina G.
dc.contributor.authorHauschild, Michael
dc.date.accessioned2018-12-06T17:38:07Z
dc.date.available2020-01-09T19:40:14Zen
dc.date.issued2018-12
dc.identifier.citationFantke, Peter; Aurisano, Nicoló ; Bare, Jane; Backhaus, Thomas; Bulle, Cécile ; Chapman, Peter M.; De Zwart, Dick; Dwyer, Robert; Ernstoff, Alexi; Golsteijn, Laura; Holmquist, Hanna; Jolliet, Olivier; McKone, Thomas E.; Owsianiak, Mikołaj ; Peijnenburg, Willie; Posthuma, Leo; Roos, Sandra; Saouter, Erwan; Schowanek, Diederik; van Straalen, Nico M.; Vijver, Martina G.; Hauschild, Michael (2018). "Toward harmonizing ecotoxicity characterization in life cycle impact assessment." Environmental Toxicology and Chemistry 37(12): 2955-2971.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/146658
dc.description.abstractEcosystem quality is an important area of protection in life cycle impact assessment (LCIA). Chemical pollution has adverse impacts on ecosystems on a global scale. To improve methods for assessing ecosystem impacts, the Life Cycle Initiative hosted by the United Nations Environment Programme established a task force to evaluate the stateâ ofâ theâ science in modeling chemical exposure of organisms and the resulting ecotoxicological effects for use in LCIA. The outcome of the task force work will be global guidance and harmonization by recommending changes to the existing practice of exposure and effect modeling in ecotoxicity characterization. These changes will reflect the current science and ensure the stability of recommended practice. Recommendations must work within the needs of LCIA in terms of 1) operating on information from any inventory reporting chemical emissions with limited spatiotemporal information, 2) applying best estimates rather than conservative assumptions to ensure unbiased comparison with results for other impact categories, and 3) yielding results that are additive across substances and life cycle stages and that will allow a quantitative expression of damage to the exposed ecosystem. We describe the current framework and discuss research questions identified in a roadmap. Primary research questions relate to the approach toward ecotoxicological effect assessment, the need to clarify the method’s scope and interpretation of its results, the need to consider additional environmental compartments and impact pathways, and the relevance of effect metrics other than the currently applied geometric mean of toxicity effect data across species. Because they often dominate ecotoxicity results in LCIA, we give metals a special focus, including consideration of their possible essentiality and changes in environmental bioavailability. We conclude with a summary of key questions along with preliminary recommendations to address them as well as open questions that require additional research efforts. Environ Toxicol Chem 2018;37:2955â 2971. © 2018 SETACRefinements are proposed for the current ecotoxicological effect characterization in life cycle impact assessment.
dc.publisherCRC
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSpecies sensitivity distributions
dc.subject.otherEnvironmental modeling
dc.subject.otherEcotoxicology
dc.subject.otherEcosystem exposure
dc.subject.otherLife cycle impact assessment
dc.titleToward harmonizing ecotoxicity characterization in life cycle impact assessment
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146658/1/etc4261.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146658/2/etc4261_am.pdf
dc.identifier.doi10.1002/etc.4261
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferencePosthuma L, Suter II GW, Traas TP. 2002. Species Sensitivity Distributions in Ecotoxicology. CRC, Boca Raton, FL, USA.
dc.identifier.citedreferenceNugegoda D, Kibria G. 2013. Water quality guidelines for the protection of aquatic ecosystems. In Férard Jâ F, Blaise C, eds, Encyclopedia of Aquatic Ecotoxicology. Springer Netherlands, Dordrecht, The Netherlands, pp 1177 â 1196.
dc.identifier.citedreferenceOrganisation for Economic Coâ operation and Development. 2008. OECD environmental outlook to 2030. Paris, France.
dc.identifier.citedreferenceOuédraogo O, Chételat J, Amyot M. 2015. Bioaccumulation and trophic transfer of mercury and selenium in African subâ tropical fluvial reservoirs food webs (Burkina Faso). PLoS One 10: e0123048.
dc.identifier.citedreferenceOwsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ. 2013. Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ Sci Technol 47: 3241 â 3250.
dc.identifier.citedreferenceOwsianiak M, Holm PE, Fantke P, Christiansen KS, Borggaard OK, Hauschild MZ. 2015. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source. Environ Pollut 206: 400 â 410.
dc.identifier.citedreferencePennington DW, Payet J, Hauschild M. 2004. Aquatic ecotoxicological indicators in lifeâ cycle assessment. Environ Toxicol Chem 23: 1796 â 1807.
dc.identifier.citedreferencePlouffe G, Bulle C, Deschênes L. 2015. Assessing the variability of the bioavailable fraction of zinc at the global scale using geochemical modeling and soil archetypes. Int J Life Cycle Assess 20: 527 â 540.
dc.identifier.citedreferencePlouffe G, Bulle C, Deschênes L. 2016. Characterization factors for zinc terrestrial ecotoxicity including speciation. Int J Life Cycle Assess 21: 523 â 535.
dc.identifier.citedreferencePosthuma L, de Zwart D. 2006. Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ Toxicol Chem 25: 1094 â 1105.
dc.identifier.citedreferencePosthuma L, de Zwart D. 2012. Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environ Toxicol Chem 31: 2175 â 2188.
dc.identifier.citedreferencePosthuma L, de Zwart D, Keijzers R, Postma J. 2016. Ecologische Sleutelfactor Toxiciteit. Deel 2: Kalibratie: Toxische druk en ecologische effecten op macrofauna. STOWA rapport nr.: 2016â 15 B. STOWA, Amersfoort, The Netherlands.
dc.identifier.citedreferencePrevedouros K, Cousins IT, Buck RC, Korzeniowski SH. 2006. Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40: 32 â 44.
dc.identifier.citedreferencePu Y, Laratte B, Ionescu RE. 2017. Freshwater sediment characterization factors of copper oxide nanoparticles. IOP Conf Ser Earth Environ Sci 51: 012020.
dc.identifier.citedreferenceRosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ. 2008. USEtoxâ The UNEPâ SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13: 532 â 546.
dc.identifier.citedreferenceSaouter E, Aschberger K, Fantke P, Hauschild MZ, Bopp SK, Kienzler A, Paini A, Pant R, Secchi M, Sala S. 2017a. Improving substance information in USEtox ®, Part 1: Discussion on data and approaches for estimating freshwater ecotoxicity effect factors. Environ Toxicol Chem 36: 3450 â 3462.
dc.identifier.citedreferenceSaouter E, Aschberger K, Fantke P, Hauschild MZ, Kienzler A, Paini A, Pant R, Radovnikovic A, Secchi M, Sala S. 2017b. Improving substance information in USEtox ®, Part 2: Data for estimating fate and ecosystem exposure factors. Environ Toxicol Chem 36: 3463 â 3470.
dc.identifier.citedreferenceSaouter E, Biganzioli F, Ceriani L, Sala S, Versteeg D. 2018. Using REACH and EFSA database to derive input data for Environmental Footprint chemical toxicity impact categories. Draft report prepared for the Environmental Footprint Stakeholder Workshop of February 14th 2018. JRC Publication no. J RC110659. Ispra, Italy.
dc.identifier.citedreferenceSaouter EG, Perazzolo C, Steiner LD. 2011. Comparing chemical environmental scores using USEtoxâ ¢ and CDV from the European Ecolabel. Int J Life Cycle Assess 16: 795 â 802.
dc.identifier.citedreferenceSchäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M. 2007. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382: 272 â 285.
dc.identifier.citedreferenceSchwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B. 2006. The challenge of micropollutants in aquatic systems. Science 313: 1072 â 1077.
dc.identifier.citedreferenceShimako AH, Tirutaâ Barna L, Ahmadi A. 2017. Operational integration of time dependent toxicity impact category in dynamic LCA. Sci Total Environ 599â 600: 806 â 819.
dc.identifier.citedreferenceSteffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347: 736 â 746.
dc.identifier.citedreferenceStehle S, Schulz R. 2015. Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci U S A 112: 5750 â 5755.
dc.identifier.citedreferenceStumm W, Morgan JJ. 1995. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. John Wiley & Sons, Hoboken, NJ, USA.
dc.identifier.citedreferenceTromson C, Bulle C, Deschênes L. 2017. Including the spatial variability of metal speciation in the effect factor in life cycle impact assessment: Limits of the equilibrium partitioning method. Sci Total Environ 581â 582: 117 â 125.
dc.identifier.citedreferenceUmwelt Bundesamt (German Federal Environment Agency). 2015. REACH Compliance: Data availability of REACH registration. Part 1: Screening of chemicals > 1000 tpa. Dessauâ Roà lau, Germany.
dc.identifier.citedreferenceUnited Nations Environment Programme. 2016. Global environmental outlookâ GEO 6: Assessment for the Pan European region. Nairobi, Kenya.
dc.identifier.citedreferenceUS Environmental Protection Agency. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. Washington, DC.
dc.identifier.citedreferencevan Beelen P, Verbruggen EMJ, Peijnenburg WJGM. 2003. The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil. Chemosphere 52: 1153 â 1162.
dc.identifier.citedreferencevan den Brink PJ, Brock TCM, Posthuma L. 2002. The value of the species sensitivity distribution concept for predicting field effects. In Posthuma L, Suter II GW, Traas TP, eds, Species Sensitivity Distributions in Ecotoxicology. CRC, Boca Raton, FL, USA, pp 155 â 198.
dc.identifier.citedreferencevan der Oost R, Beyer J, Vermeulen NPE. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ Toxicol Pharm 13: 57 â 149.
dc.identifier.citedreferenceVan Hoof G, Schowanek D, Franceschini H, Muñoz I. 2011. Ecotoxicity impact assessment of laundry products: A comparison of USEtox and critical dilution volume approaches. Int J Life Cycle Assess 16: 803 â 818.
dc.identifier.citedreferencevan Zelm R, Huijbregts MAJ, Harbers JV, Wintersen A, Struijs J, Posthuma L, van de Meent D. 2007. Uncertainty in msPAFâ based ecotoxicological effect factors for freshwater ecosystems in life cycle impact assessment. Integr Environ Assess Manag 3: 203 â 210.
dc.identifier.citedreferencevan Zelm R, Huijbregts MAJ, Posthuma L, Wintersen A, van de Meent D. 2009. Pesticide ecotoxicological effect factors and their uncertainties for freshwater ecosystems. Int J Life Cycle Assess 14: 43 â 51.
dc.identifier.citedreferenceVerones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent A, Liao X, Lindner JP, de Souza DM, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, Ridoutt B, Fantke P. 2017. LCIA framework and crossâ cutting issues guidance within the UNEPâ SETAC Life Cycle Initiative. J Cleaner Prod 161: 957 â 967.
dc.identifier.citedreferenceVerweij W, Blonk B, Kraak M. 2015. How to protect groundwater organisms to toxic substances? EU Working Group Groundwater, Luxembourg.
dc.identifier.citedreferenceWang Dâ G., Norwood W, Alaee M, Byer JD, Brimble S. 2013. Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 93: 711 â 725.
dc.identifier.citedreferenceWender BA, Prado V, Fantke P, Ravikumar D, Seager TP. 2018. Sensitivityâ based research prioritization through stochastic characterization modeling. Int J Life Cycle Assess 23: 324 â 332.
dc.identifier.citedreferenceWesth TB, Hauschild MZ, Birkved M, Jørgensen MS, Rosenbaum RK, Fantke P. 2015. The USEtox story: A survey of model developer visions and user requirements. Int J Life Cycle Assess 20: 299 â 310.
dc.identifier.citedreferenceWoodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG, Redhead J, Ridding L, Dean H, Sleep D, Henrys P, Peyton J, Hulmes S, Sarospataki M, Saure C, Edwards M, Genersch E, Knabe S, Pywell RF. 2017. Countryâ specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356: 1393 â 1395.
dc.identifier.citedreferenceZajdlik BA, Dixon DG, Stephenson G. 2009. Estimating water quality guidelines for environmental contaminants using multimodal species sensitivity distributions: A case study with atrazine. Hum Ecol Risk Assess 15: 554 â 564.
dc.identifier.citedreferenceAzimonti G, Galimberti F, Marchetto F, Menaballi L, Ullucci S, Pellicioli F, Caffi A, Ceriani L, Boer WJ de, Voet H van der, Moet A. 2015. Comparison of NOEC values to EC 10 /EC 20 values, including confidence intervals, in aquatic and terrestrial ecotoxicological risk assessment. EFSA Supporting Publication 12 (ENâ 906). European Food Safety Authority, Parma, Italy.
dc.identifier.citedreferenceBackhaus T, Faust M, Kortenkamp A. 2013. Cumulative risk assessment: A European perspective on the state of the art and the necessary next steps forward. Integr Environ Assess Manag 9: 547 â 548.
dc.identifier.citedreferenceChapman PM, Wang F. 2000. Issues in ecological risk assessment of inorganic metals and metalloids. Hum Ecol Risk Assess 6: 965 â 988.
dc.identifier.citedreferenceChapman PM, Wang F, Janssen CR, Goulet RR, Kamunde CN. 2003. Conducting ecological risk assessments of inorganic metals and metalloids: Current status. Hum Ecol Risk Assess 9: 641 â 697.
dc.identifier.citedreferenceChen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL. 2000. Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45: 1525 â 1536.
dc.identifier.citedreferenceCrenna E, Sala S, Polce C, Collina E. 2017. Pollinators in life cycle assessment: Towards a framework for impact assessment. J Cleaner Prod 140: 525 â 536.
dc.identifier.citedreferenceDaam MA, Van den Brink PJ. 2010. Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology 19: 24 â 37.
dc.identifier.citedreferencede Oliveiraâ Filho EC, Lopes RM, Paumgartten FJR. 2004. Comparative study on the susceptibility of freshwater species to copperâ based pesticides. Chemosphere 56: 369 â 374.
dc.identifier.citedreferencede Zwart D. 2002. Observed regularities in species sensitivity distributions for aquatic species. In Posthuma L, Suter II GW, Traas TP, eds, Species Sensitivity Distributions in Ecotoxicology. CRC, Boca Raton, FL, USA, pp 133 â 154.
dc.identifier.citedreferencede Zwart D. 2005. Ecological effects of pesticide use in the Netherlands: Modeled and observed effects in the field ditch. Integr Environ Assess Manag 1: 123 â 134.
dc.identifier.citedreferencede Zwart D, Posthuma L. 2005. Complex mixture toxicity for single and multiple species: Proposed methodologies. Environ Toxicol Chem 24: 2665 â 2676.
dc.identifier.citedreferenceDi Lorenzo T, Di Marzio WD, Sáenz ME, Baratti M, Dedonno AA, Iannucci A, Cannicci S, Messana G, Galassi DM. 2014. Sensitivity of hypogean and epigean freshwater copepods to agricultural pollutants. Environ Sci Pollut Res 21: 4643 â 4655.
dc.identifier.citedreferenceDiamond ML, Gandhi N, Adams WJ, Atherton J, Bhavsar SP, Bulle C, Campbell PGC, Dubreuil A, Fairbrother A, Farley K, Green A, Guinee J, Hauschild MZ, Huijbregts MAJ, Humbert S, Jensen KS, Jolliet A, Margni M, McGeer JC, Peijnenburg WJGM, Rosenbaum R, van de Meent D, Vijver MG. 2010. The Clearwater consensus: The estimation of metal hazard in fresh water. Int J Life Cycle Assess 15: 143 â 147.
dc.identifier.citedreferenceDong Y, Gandhi N, Hauschild MZ. 2014. Development of comparative toxicity potentials of 14 cationic metals in freshwater. Chemosphere 112: 26 â 33.
dc.identifier.citedreferenceDong Y, Rosenbaum RK, Hauschild MZ. 2016. Assessment of metal toxicity in marine ecosystems: Comparative toxicity potentials for nine cationic metals in coastal seawater. Environ Sci Technol 50: 269 â 278.
dc.identifier.citedreferenceDoublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ. 2015. Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17: 969 â 983.
dc.identifier.citedreferenceElliott JE, Wilson LK, Langelier KM, Mineau P, Sinclair PH. 1997. Secondary poisoning of birds of prey by the organophosphorus insecticide, phorate. Ecotoxicology 6: 219 â 231.
dc.identifier.citedreferenceEuropean Commission. 2003. Technical guidance document on risk assessment, 2nd ed. Brussels, Belgium.
dc.identifier.citedreferenceEuropean Commission. 2011a. Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance document no. 27: Technical guidance for deriving environmental quality standards. Brussels, Belgium.
dc.identifier.citedreferenceEuropean Commission. 2011b. International Reference Life Cycle Data System (ILCD) Handbook: Recommendations for life cycle impact assessment in the European contextâ Based on existing environmental impact assessme nt models and factors, 1st ed. Brussels, Belgium.
dc.identifier.citedreferenceEuropean Commission. 2012. Addressing the new challenges for risk assessment. Brussels, Belgium.
dc.identifier.citedreferenceEuropean Commission. 2013. Commission recommendation 2013/179/EU of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Brussels, Belgium.
dc.identifier.citedreferenceEuropean Centre for Ecotoxicology and Toxicology of Chemicals. 2016. Freshwater ecotoxicity as an impact category in life cycle assessment. Technical report no. 127. Brussels, Belgium.
dc.identifier.citedreferenceEuropean Chemicals Agency. 2013. Agreement of the Member State Committee on the identification of 4â nonylphenol, branched and linear, ethoxylated as a Substance of Very High Concern: Annex XV dossier. Helsinki, Finland.
dc.identifier.citedreferenceEuropean Food Safety Authority. 2013. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edgeâ ofâ field surface waters. Parma, Italy. EFSA J 11: 3290.
dc.identifier.citedreferenceEurometauxâ European Association of Metals. 2014. Leuven Workshop on Environmental and Human Toxicity of metals in LCA: Status, limitations and new developments. Leuven, Belgium.
dc.identifier.citedreferenceFantke P, Ernstoff A. 2018. LCA of chemicals and chemical products. In Hauschild M, Rosenbaum RK, Olsen SI, eds, Life Cycle Assessment: Theory and Practice. Springer International, Dordrecht, The Netherlands, pp 783 â 815.
dc.identifier.citedreferenceFantke P, Jolliet O, Wannaz C. 2015. Dynamic toxicity modeling based on the USEtox matrix framework. Proceedings, Society of Environmental Toxicology and Chemistry Europe 25th Annual Meeting, 3â 7 May, 2015, Barcelona, Spain, pp 33 â 34.
dc.identifier.citedreferenceFantke P, Bijster M, Guignard C, Hauschild M, Huijbregts M, Jolliet O, Kounina A, Magoud V, Margni M, McKone T, Posthuma L, Rosenbaum RK, van de Meent D, van Zelm R. 2017. USEtox ® 2.0 Documentation (Ver 1). Kgs. Lyngby, Denmark.
dc.identifier.citedreferenceFinnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S. 2009. Recent developments in life cycle assessment. J Environ Manage 91: 1 â 21.
dc.identifier.citedreferenceFleeger JW, Carman KR, Nisbet RM. 2003. Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317: 207 â 233.
dc.identifier.citedreferenceFrischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay Aâ M., Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, Canals LM, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O. 2016. Global guidance on environmental life cycle impact assessment indicators: Progress and case study. Int J Life Cycle Assess 21: 429 â 442.
dc.identifier.citedreferenceFrischknecht R, Jolliet O. 2016. Global guidance for life cycle impact assessment indicators, Vol 1. UNEP/SETAC Life Cycle Initiative, Paris, France.
dc.identifier.citedreferenceGandhi N, Diamond ML, van de Meent D, Huijbregts MAJ, Peijnenburg WJGM, Guinée J. 2010. New method for calculating comparative toxicity potential of cationic metals in freshwater: Application to copper, nickel, and zinc. Environ Sci Technol 44: 5195 â 5201.
dc.identifier.citedreferenceGolsteijn L, Hendriks HWM, van Zelm R, Ragas AMJ, Huijbregts MAJ. 2012a. Do interspecies correlation estimations increase the reliability of toxicity estimates for wildlife ? Ecotoxicol Environ Saf 80: 238 â 243.
dc.identifier.citedreferenceGolsteijn L, van Zelm R, Veltman K, Musters G, Hendriks AJ, Huijbregts MAJ. 2012b. Including ecotoxic impacts on warmâ blooded predators in life cycle impact assessment. Integr Environ Assess Manag 8: 372 â 378.
dc.identifier.citedreferenceGolsteijn L, van Zelm R, Hendriks AJ, Huijbregts MAJ. 2013. Statistical uncertainty in hazardous terrestrial concentrations estimated with aquatic ecotoxicity data. Chemosphere 93: 366 â 372.
dc.identifier.citedreferenceGuinée JB, Heijungs R, Vijver MG, Peijnenburg WJGM. 2017. Setting the stage for debating the roles of risk assessment and lifeâ cycle assessment of engineered nanomaterials. Nat Nanotechnol 12: 727 â 733.
dc.identifier.citedreferenceHauschild M, Huijbregts MAJ. 2015. Life Cycle Impact Assessment. Springer, Dordrecht, The Netherlands.
dc.identifier.citedreferenceHauschild MZ. 2005. Assessing environmental impacts in a lifeâ cycle perspective. Environ Sci Technol 39: 81A â 88A.
dc.identifier.citedreferenceHauschild MZ, Huijbregts MAJ, Jolliet O, Macleod M, Margni MD, van de Meent D, Rosenbaum RK, McKone TE. 2008. Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony. Environ Sci Technol 42: 7032 â 7037.
dc.identifier.citedreferenceHenderson AD, Hauschild MZ, van de Meent D, Huijbregts MAJ, Larsen HF, Margni M, McKone TE, Payet J, Rosenbaum RK, Jolliet O. 2011. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int J Life Cycle Assess 16: 701 â 709.
dc.identifier.citedreferenceHop H, BorgÃ¥ K, Gabrielsen GW, Kleivane L, Skaare JU. 2002. Food web magnification of persistent organic pollutants in poikilotherms and homeotherms from the Barents Sea. Environ Sci Technol 36: 2589 â 2597.
dc.identifier.citedreferenceHose GC. 2005. Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Hum Ecol Risk Assess 11: 951 â 966.
dc.identifier.citedreferenceHuijbregts MAJ, van de Meent D, Goedkoop M, Spriensma R. 2002. Ecotoxicological impacts in life cycle assessment. In Posthuma L, Suter II GW, Traas TP, eds, Species Sensitivity Distributions in Ecotoxicology. CRC, Boca Raton, FL, USA, pp 421 â 436.
dc.identifier.citedreferenceInternational Organization for Standardization. 2006. ISO 14040 International Standard. Environmental managementâ Life cycle assessmentâ Principles and framework. Geneva, Switzerland.
dc.identifier.citedreferenceIwasaki Y, Kotani K, Kashiwada S, Masunaga S. 2015. Does the choice of NOEC or EC10 affect the hazardous concentration for 5% of the species ? Environ Sci Technol 49: 9326 â 9330.
dc.identifier.citedreferenceJolliet O, Rosenbaum RK, Chapman PM, McKone TE, Margni MD, Scheringer M, van Straalen N, Wania F. 2006. Establishing a framework for life cycle toxicity assessment: Findings of the Lausanne review workshop. Int J Life Cycle Assess 11: 209 â 212.
dc.identifier.citedreferenceJolliet O, Frischknecht R, Bare J, Boulay Aâ M., Bulle C, Fantke P, Gheewala S, Hauschild M, Itsubo N, Margni M, McKone TE, Canals LM, Postuma L, Pradoâ Lopez V, Ridoutt B, Sonnemann G, Rosenbaum RK, Seager T, Struijs J, van Zelm R, Vigon B, Weisbrod A. 2014. Global guidance on environmental life cycle impact assessment indicators: Findings of the scoping phase. Int J Life Cycle Assess 19: 962 â 967.
dc.identifier.citedreferenceKelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC. 2007. Food webâ specific biomagnification of persistent organic pollutants. Science 317: 236 â 239.
dc.identifier.citedreferenceKerr JT. 2017. A cocktail of poisons. Science 356: 1331 â 1332.
dc.identifier.citedreferenceKümmerer K. 2009. The presence of pharmaceuticals in the environment due to human useâ Present knowledge and future challenges. J Environ Manage 90: 2354 â 2366.
dc.identifier.citedreferenceLarsen HF, Hauschild M. 2007a. Evaluation of ecotoxicity effect indicators for use in LCIA. Int J Life Cycle Assess 12: 24 â 33.
dc.identifier.citedreferenceLarsen HF, Hauschild M. 2007b. GMâ troph: A low data demand ecotoxicity effect indicator for use in LCIA. Int J Life Cycle Assess 12: 79 â 91.
dc.identifier.citedreferenceLebailly F, Levasseur A, Samson R, Deschênes L. 2014. Development of a dynamic LCA approach for the freshwater ecotoxicity impact of metals and application to a case study regarding zinc fertilization. Int J Life Cycle Assess 19: 1745 â 1754.
dc.identifier.citedreferenceLigthart TN, Aboussouan L, van de Meent D, Schönnenbeck M, Hauschild M, Delbeke K, Struijs J, Russel A, Udo de Haes H, Atherton J, van Tilborg W, Karman C, Korenromp R, Sap G, Baukloh A, Dubreuil A, Adams W, Heijungs R, Jolliet O, De Koning A, Chapmann P, Verdonck F, van der Loos R, Eikelboom R, Kuyper J. 2004. Declaration of Apeldoorn on LCIA of nonâ ferro metals. SETAC Globe 5: 46 â 47.
dc.identifier.citedreferenceMacLeod M, Breitholtz M, Cousins IT, de Wit CA, Persson LM, Rudén C, McLachlan MS. 2014. Identifying chemicals that are planetary boundary threats. Environ Sci Technol 48: 11057 â 11063.
dc.identifier.citedreferenceMattila T, Verta M, Seppälä J. 2011. Comparing priority setting in integrated hazardous substance assessment and in life cycle impact assessment. Int J Life Cycle Assess 16: 788 â 794.
dc.identifier.citedreferenceMedina MH, Correa JA, Barata C. 2007. Microâ evolution due to pollution: Possible consequences for ecosystem responses to toxic stress. Chemosphere 67: 2105 â 2114.
dc.identifier.citedreferenceMolander S, Lidholm P, Schowanek D, Recasens MdM, Palmer PFi, Christensen F, Guinee JB, Hauschild M, Jolliet O, Pennington DW, Carolson R, Bachmann TM. 2004. OMNIITOXâ Operational lifeâ cycle impact assessment models and information tools for practitioners. Int J Life Cycle Assess 9: 282 â 288.
dc.identifier.citedreferenceMüller N, de Zwart D, Hauschild M, Kijko G, Fantke P. 2017. Exploring REACH as potential data source for characterizing ecotoxicity in life cycle assessment. Environ Toxicol Chem 36: 492 â 500.
dc.identifier.citedreferenceMüller N, Fantke P. 2017. Getting the chemicals right: Gaps and opportunities in addressing inorganics in life cycle assessment. Proceedings, Society of Environmental Toxicology and Chemistry Europe 27th Annual Meeting, 7â 11 May, 2017, Brussels, Belgium.
dc.identifier.citedreferenceNendza M, Herbst T, Kussatz C, Gies A. 1997. Potential for secondary poisoning and biomagnification in marine organisms. Chemosphere 35: 1875 â 1885.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.