Show simple item record

Accuracy of Clinical Techniques for Evaluating Lower Limb Sensorimotor Functions Associated With Increased Fall Risk

dc.contributor.authorDonaghy, Alex
dc.contributor.authorDeMott, Trina
dc.contributor.authorAllet, Lara
dc.contributor.authorKim, Hogene
dc.contributor.authorAshton‐miller, James
dc.contributor.authorRichardson, James K.
dc.date.accessioned2019-01-15T20:23:10Z
dc.date.available2019-01-15T20:23:10Z
dc.date.issued2016-04
dc.identifier.citationDonaghy, Alex; DeMott, Trina; Allet, Lara; Kim, Hogene; Ashton‐miller, James ; Richardson, James K. (2016). "Accuracy of Clinical Techniques for Evaluating Lower Limb Sensorimotor Functions Associated With Increased Fall Risk." PM&R 8(4): 331-339.
dc.identifier.issn1934-1482
dc.identifier.issn1934-1563
dc.identifier.urihttps://hdl.handle.net/2027.42/146801
dc.description.abstractBackgroundIn prior work, laboratoryâ based measures of hip motor function and ankle proprioceptive precision were critical to maintaining unipedal stance and fall/fallâ related injury risk. However, the optimal clinical evaluation techniques for predicting these measures are unknown.ObjectiveTo evaluate the diagnostic accuracy of common clinical maneuvers in predicting laboratoryâ based measures of frontal plane hip rate of torque development (HipRTD) and ankle proprioceptive thresholds (AnkPRO) associated with increased fall risk.DesignProspective, observational study.SettingBiomechanical research laboratory.ParticipantsA total of 41 older subjects (aged 69.1 ± 8.3 years), 25 with varying degrees of diabetic distal symmetric polyneuropathy and 16 without.AssessmentsClinical hip strength was evaluated by manual muscle testing (MMT) and lateral plank time, defined as the number of seconds that the laterally lying subject could lift the hips from the support surface. Foot/ankle evaluation included Achilles reflex and vibratory, proprioceptive, monofilament, and pinprick sensations at the great toe.Main Outcome MeasuresHipRTD, abduction and adduction, using a custom wholeâ body dynamometer. AnkPRO determined with subjects standing using a foot cradle system and a staircase series of 100 frontal plane rotational stimuli.ResultsPearson correlation coefficients (r) and receiver operator characteristic (ROC) curves revealed that LPT correlated more strongly with HipRTD (r/P = 0.61/<.001 and 0.67/<.001, for abductor/adductor, respectively) than did hip abductor MMT (r/P = 0.31/.044). Subjects with greater vibratory and proprioceptive sensation, and intact Achilles reflexes, monofilament, and pin sensation had more precise AnkPRO. LPT of <12 seconds yielded a sensitivity/specificity of 91%/80% for identifying HipRTD < 0.25 (body size in Newtonâ meters), and vibratory perception of <8 seconds yielded a sensitivity/specificity of 94%/80% for the identification of AnkPRO >1.0°.ConclusionsLPT is a more effective measure of HipRTD than MMT. Similarly, clinical vibratory sense and monofilament testing are effective measures of AnkPRO, whereas clinical proprioceptive sense is not.
dc.publisherElsevier Health Sciences
dc.publisherWiley Periodicals, Inc.
dc.titleAccuracy of Clinical Techniques for Evaluating Lower Limb Sensorimotor Functions Associated With Increased Fall Risk
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Physical Medicine and Rehabilitation, University of Michigan Health System, Ann Arbor, MI
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI
dc.contributor.affiliationumDepartment of Physical Medicine and Rehabilitation, University of Michigan Health System, Ann Arbor, MI
dc.contributor.affiliationumDepartment of Physical Medicine and Rehabilitation, University of Michigan Health System, 325 East Eisenhower Pkwy, Ann Arbor, MI 48108
dc.contributor.affiliationotherUniversity of Applied Sciences, Geneva, Switzerland
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146801/1/pmrj331.pdf
dc.identifier.doi10.1016/j.pmrj.2015.08.017
dc.identifier.sourcePM&R
dc.identifier.citedreferenceP. Brinckmann, H. Hoefert, H.T. Jongen. Sex differences in the skeletal geometry of the human pelvis and hip joint. J Biomech. 1981; 14: 427 â 430.
dc.identifier.citedreferenceC.G. Van den Bosch, M.G. Gilsing, S.G. Lee, J.K. Richardson, J.A. Ashtonâ Miller. Peripheral neuropathy effect on ankle inversion and eversion detection thresholds. Arch Phys Med Rehabil. 1995; 76: 850 â 856.
dc.identifier.citedreferenceE. Frese, M. Brown, B.J. Norton. Clinical reliability of manual muscle testing. Middle trapezius and gluteus medius muscles. Phys Ther. 1987; 67: 1072 â 1076.
dc.identifier.citedreferenceL. Noreau, J. Vachon. Comparison of three methods to assess muscular strength in individuals with spinal cord injury. Spinal Cord. 1998; 36: 716 â 723.
dc.identifier.citedreferenceR.W. Bohannon. Manual muscle testing: Does it meet the standards of an adequate screening test?. Clin Rehabil. 2005; 19: 662 â 667.
dc.identifier.citedreferenceJ.C. Agre, J.L. Magness, S.Z. Hull, et al. Strength testing with a portable dynamometer: Reliability for upper and lower extremities. Arch Phys Med Rehabil. 1987; 68: 454 â 458.
dc.identifier.citedreferenceR.L. Braddom. Physical Medicine and Rehabilitation. New York, NY: Elsevier Health Sciences. 2010.
dc.identifier.citedreferenceJ.A. Ashtonâ Miller, E.M. Wojtys, L.J. Huston, D. Fryâ Welch. Can proprioception really be improved by exercises?. Knee Surg Sports Traumatol Arthrosc. 2001; 9: 128 â 136.
dc.identifier.citedreferenceJ.K. Richardson, L. Allet, H. Kim, J.A. Ashtonâ Miller. Fibular motor nerve conduction studies and ankle sensorimotor capacities. Muscle Nerve. 2013; 47: 497 â 503.
dc.identifier.citedreferenceS.C. Apfel, J.C. Arezzo, L. Lipson, J.A. Kessler. Nerve growth factor prevents experimental cisplatin neuropathy. Ann Neurol. 1992; 31: 76 â 80.
dc.identifier.citedreferenceE.L. Feldman, M.J. Stevens, P.K. Thomas, M.B. Brown, N. Canal, D.A. Greene. A practical twoâ step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994; 17: 1281 â 1289.
dc.identifier.citedreferenceS.T. O’Keefe, T. Smith, R. Valacio, C.L. Jack, J.R. Playfer, M. Lye. A comparison of two techniques for ankle jerk assessment in elderly subjects. Lancet. 1994; 344: 1619 â 1620.
dc.identifier.citedreferenceD.S. Oyer, D. Saxon, A. Shah. Quantitative assessment of diabetic peripheral neuropathy with use of the clanging tuning fork test. Endocr Pract. 2007; 13: 5 â 10.
dc.identifier.citedreferenceM.W. O’Dell, C.D. Lin, A. Ponago. The physiatric history and physical examination. In R.L. Braddom, ed. Physical Medicine and Rehabilitation. 94th ed. Philadelphia, PA: Elsevier/Saunders. 2011, 14.
dc.identifier.citedreferenceMcConville JT, Churchill TD, Caleps I, Clauser CE, Cuzzi J. Anthropometric relationship of body and body segment moments of inertia. Air Force Aerospace Medical Research Laboratory Report AFAMRLâ TRâ 80â 119, 1980.
dc.identifier.citedreferenceK.C. Moisio, D.R. Sumner, S. Shott, D.E. Hurwitz. Normalization of joint moments during gait: A comparison of two techniques. J Biomech. 2003; 36: 599 â 603.
dc.identifier.citedreferenceD.G. Thelen, A.B. Schultz, N.B. Alexander, J.A. Ashtonâ Miller. Effects of age on rapid ankle torque development. J Gerontol A Biol Sci Med Sci. 1996; 51: M226 â M232.
dc.identifier.citedreferenceS. Aitkens, J. Lord, E. Bernauer, W.M. Fowler Jr., J.S. Lieberman, P. Berck. Relationship of manual muscle testing to objective strength measurements. Muscle Nerve. 1989; 12: 173 â 177.
dc.identifier.citedreferenceR.W. Simmons, C. Richardson, R. Pozos. Postural stability of diabetic patients with and without cutaneous sensory deficit in the foot. Diabetes Res Clin Pract. 1997; 36: 153 â 160.
dc.identifier.citedreferenceY.Y. Beckmann, Y. à iftçi, C. Ertekin. The detection of sensitivity of proprioception by a new clinical test: The dual joint position test. Clin Neurol Neurosurg. 2013; 115: 1023 â 1027.
dc.identifier.citedreferenceP. Khamwong, K. Nosaka, U. Pirunsan, A. Paungmali. Reliability of muscle function and sensory perception measurements of the wrist extensors. Physiother Theory Pract. 2010; 26: 408 â 415.
dc.identifier.citedreferenceR.A. Ekstrom, R.A. Donatelli, K.C. Carp. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther. 2007; 37: 754 â 762.
dc.identifier.citedreferenceW. Rohmert. Ermittlung von Erholungspausen fur statische Arbeit des Menschen. Int Z Angew Physiol. 1960; 18: 123 â 164.
dc.identifier.citedreferenceD.A. Krause, S.J. Schlagel, B.M. Stember, J.E. Zoetewey, J.H. Hollman. Influence of lever arm and stabilization on measures of hip abduction and adduction torque obtained by handâ held dynamometry. Arch Phys Med Rehabil. 2007; 88: 37 â 42.
dc.identifier.citedreferenceJ. Rainville, C. Jouve, M. Finno, J. Limke. Comparison of four tests of quadriceps strength in L3 or L4 radiculopathies. Spine. 2003; 28: 2466 â 2471.
dc.identifier.citedreferenceB.A. Allen, J.C. Hannon, R.D. Burns, S.M. Williams. Effect of a core conditioning intervention on tests of trunk muscular endurance in schoolâ aged children. J Strength Cond Res. 2014; 28: 2063 â 2070.
dc.identifier.citedreferenceJ.E. Manson, F.B. Hu, J.W. Richâ Edwards, et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999; 341: 650 â 658.
dc.identifier.citedreferenceK. Yaffe, D. Barnes, M. Nevitt, L.Y. Lui, K. Covinsky. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Arch Intern Med. 2001; 161: 1703 â 1708.
dc.identifier.citedreferenceE.A. Hurvitz, J.K. Richardson, R.A. Werner, A.M. Ruhl, M.R. Dixon. Unipedal stance testing as an indicator of fall risk among older outpatients. Arch Phys Med Rehabil. 2000; 81: 587 â 591.
dc.identifier.citedreferenceR.W. Bohannon, P.A. Larkin, A.C. Cook, J. Gear, J. Singer. Decrease in timed balance test scores with aging. Phys Ther. 1984; 64: 1067 â 1070.
dc.identifier.citedreferenceJ.K. Richardson. Factors associated with falls in older patients with diffuse polyneuropathy. J Am Geriatr Soc. 2002; 50: 1767 â 1773.
dc.identifier.citedreferenceC.D. MacKinnon, D.A. Winter. Control of whole body balance in the frontal plane during human walking. J Biomech. 1993; 26: 633 â 644.
dc.identifier.citedreferenceC.E. Bauby, A.D. Kuo. Active control of lateral balance in human walking. J Biomech. 2000; 33: 1433 â 1440.
dc.identifier.citedreferenceM.J. Hilliard, K.M. Martinez, I. Janssen, et al. Lateral balance factors predict future falls in communityâ living older adults. Arch Phys Med Rehabil. 2008; 89: 1708 â 1713.
dc.identifier.citedreferenceJ.K. Richardson, T. Demott, L. Allet, H. Kim, J.A. Ashtonâ Miller. Hip strength: Ankle proprioceptive threshold ratio predicts falls and injury in diabetic neuropathy. Muscle Nerve. 2014; 50: 437 â 442.
dc.identifier.citedreferenceS.R. Cummings, M.C. Nevitt. Nonâ skeletal determinants of fractures: The potential importance of the mechanics of falls. Study of Osteoporotic Fractures Research Group. Osteoporos Int. 1994; 4 (Suppl 1): 67 â 70.
dc.identifier.citedreferenceJ. Son, J.A. Ashtonâ Miller, J.K. Richardson. Frontal plane ankle proprioceptive thresholds and unipedal balance. Muscle Nerve. 2009; 39: 150 â 157.
dc.identifier.citedreferenceL. Allet, H. Kim, J. Ashtonâ Miller, T. De Mott, J.K. Richardson. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time. Muscle Nerve. 2012; 45: 578 â 585.
dc.identifier.citedreferenceN. Deshpande, D.M. Connelly, E.G. Culham, P.A. Costigan. Reliability and validity of ankle proprioceptive measures. Arch Phys Med Rehabil. 2003; 84: 883 â 889.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.