Show simple item record

A quantitative structure‐property relationship (QSPR) for estimating solid material‐air partition coefficients of organic compounds

dc.contributor.authorHuang, Lei
dc.contributor.authorJolliet, Olivier
dc.date.accessioned2019-01-15T20:23:47Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-01
dc.identifier.citationHuang, Lei; Jolliet, Olivier (2019). "A quantitative structure‐property relationship (QSPR) for estimating solid material‐air partition coefficients of organic compounds." Indoor Air 29(1): 79-88.
dc.identifier.issn0905-6947
dc.identifier.issn1600-0668
dc.identifier.urihttps://hdl.handle.net/2027.42/146827
dc.description.abstractThe material‐air partition coefficient (Kma) is a key parameter to estimate the release of chemicals incorporated in solid materials and resulting human exposures. Existing correlations to estimate Kma are applicable for a limited number of chemical‐material combinations without considering the effect of temperature. The present study develops a quantitative structure‐property relationship (QSPR) to predict Kma for a large number of chemical‐material combinations. We compiled a dataset of 991 measured Kma for 179 chemicals in 22 consolidated material types. A multiple linear regression model predicts Kma as a function of chemical’s Koa, enthalpy of vaporization (∆Hv), temperature, and material type. The model shows good fitting of the experimental dataset with adjusted R2 of 0.93 and has been verified by internal and external validations to be robust, stable and has good predicting ability (Rext2 > 0.78). A generic QSPR is also developed to predict Kma from chemical properties and temperature only (adjusted R2 = 0.84), without the need to assign a specific material type. These QSPRs provide correlation methods to estimate Kma for a wide range of organic chemicals and materials, which will facilitate high‐throughput estimates of human exposures for chemicals in solid materials, particularly building materials and furniture.
dc.publisherWiley Periodicals, Inc.
dc.publisherUnited States Environmental Protection Agency
dc.subject.otherconsumer exposure
dc.subject.othercorrelation
dc.subject.otherindoor release
dc.subject.otherorganic chemicals
dc.subject.otherpartitioning
dc.subject.othersolid materials
dc.titleA quantitative structure‐property relationship (QSPR) for estimating solid material‐air partition coefficients of organic compounds
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146827/1/ina12510.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146827/2/ina12510_am.pdf
dc.identifier.doi10.1111/ina.12510
dc.identifier.sourceIndoor Air
dc.identifier.citedreferenceBooij K, Hofmans HE, Fischer CV, et al. Temperature‐dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low‐density polyethylene membranes. Environ Sci Technol. 2003; 37 ( 2 ): 361 ‐ 366.
dc.identifier.citedreferenceLiu Z, Ye W, Little JC. Predicting emissions of volatile and semivolatile organic compounds from building materials: a review. Build Environ. 2013; 64: 7 ‐ 25.
dc.identifier.citedreferenceKamprad I, Goss K‐U. Systematic investigation of the sorption properties of polyurethane foams for organic vapors. Anal Chem. 2007; 79 ( 11 ): 4222 ‐ 4227.
dc.identifier.citedreferenceBartkow ME, Hawker DW, Kennedy KE, et al. Characterizing uptake kinetics of PAHs from the air using polyethylene‐based passive air samplers of multiple surface area‐to‐volume ratios. Environ Sci Technol. 2004; 38 ( 9 ): 2701 ‐ 2706.
dc.identifier.citedreferenceKennedy KE, Hawker DW, Müller JF, et al. A field comparison of ethylene vinyl acetate and low‐density polyethylene thin films for equilibrium phase passive air sampling of polycyclic aromatic hydrocarbons. Atmos Environ. 2007; 41 ( 27 ): 5778 ‐ 5787.
dc.identifier.citedreferenceMorrison G, Li H, Mishra S, et al. Airborne phthalate partitioning to cotton clothing. Atmos Environ. 2015; 115: 149 ‐ 152.
dc.identifier.citedreferenceMorrison G, Shakila N, Parker K. Accumulation of gas‐phase methamphetamine on clothing, toy fabrics, and skin oil. Indoor Air. 2015; 25 ( 4 ): 405 ‐ 414.
dc.identifier.citedreferenceZhao D, Little JC, Cox SS. Characterizing polyurethane foam as a sink for or source of volatile organic compounds in indoor air. J Environ Eng. 2004; 130 ( 9 ): 983 ‐ 989.
dc.identifier.citedreferenceBodalal A, Zhang J, Plett E, et al. Correlations between the internal diffusion and equilibrium partition coefficients of volatile organic compounds (VOCs) in building materials and the VOC properties. ASHRAE Trans. 2001; 107: 789.
dc.identifier.citedreferenceGuo Z. Review of indoor emission source models. Part 2. Parameter estimation. Environ Pollut 2002; 120 ( 3 ): 551 ‐ 564.
dc.identifier.citedreferenceChaemfa C, Barber JL, Gocht T, et al. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides. Environ Pollut. 2008; 156 ( 3 ): 1290 ‐ 1297.
dc.identifier.citedreferenceShoeib M, Harner T. Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol. 2002; 36 ( 19 ): 4142 ‐ 4151.
dc.identifier.citedreferenceHolmgren T, Persson L, Andersson PL, et al. A generic emission model to predict release of organic substances from materials in consumer goods. Sci Total Environ. 2012; 437: 306 ‐ 314.
dc.identifier.citedreferenceAdams RG, Lohmann R, Fernandez LA, et al. Polyethylene devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ Sci Technol. 2007; 41 ( 4 ): 1317 ‐ 1323.
dc.identifier.citedreferenceLiu Y, Zhou X, Wang D, et al. A prediction model of VOC partition coefficient in porous building materials based on adsorption potential theory. Build Environ. 2015; 93: 221 ‐ 233.
dc.identifier.citedreferenceZhang Y, Luo X, Wang X, et al. Influence of temperature on formaldehyde emission parameters of dry building materials. Atmos Environ. 2007; 41 ( 15 ): 3203 ‐ 3216.
dc.identifier.citedreferenceUSEPA. Estimation Programs Interface Suite ™ for Microsoft ® Windows, v 4.11. Washington, DC: United States Environmental Protection Agency; 2012.
dc.identifier.citedreferenceGramatica P, Cassani S, Chirico N. QSARINS‐chem: insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comp Chem. 2014; 35 ( 13 ): 1036 ‐ 1044.
dc.identifier.citedreferenceGramatica P, Chirico N, Papa E, et al. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comp Chem. 2013; 34 ( 24 ): 2121 ‐ 2132.
dc.identifier.citedreferenceChirico N, Gramatica P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model. 2012; 52 ( 8 ): 2044 ‐ 2058.
dc.identifier.citedreferenceChirico N, Gramatica P. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model. 2011; 51 ( 9 ): 2320 ‐ 2335.
dc.identifier.citedreferenceGramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci. 2007; 26 ( 5 ): 694 ‐ 701.
dc.identifier.citedreferenceCassani S, Gramatica P. Identification of potential PBT behavior of personal care products by structural approaches. Sustain Chem Pharm. 2015; 1: 19 ‐ 27.
dc.identifier.citedreferenceHuang L, Fantke P, Ernstoff A, et al. A quantitative property‐property relationship for the internal diffusion coefficients of organic compounds in solid materials. Indoor Air. 2017; 27 ( 6 ): 1128 ‐ 1140.
dc.identifier.citedreferenceHuang L, Jolliet O. A parsimonious model for the release of chemicals encapsulated in products. Atmos Environ. 2016; 127: 223 ‐ 235.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.